代写CHEM0019: PHYSICAL CHEMISTRY Quantum Mechanics

CHEM0019: PHYSICAL CHEMISTRY Quantum Mechanics

Section   Topics covered

1            Overview

2             Postulates of quantum mechanics: probability interpretation of Ψ, operators and Hamiltonians, eigenvalue equations, Schrödinger equation, expectation values, Variation principle

3             Exact solutions to the Schrödinger equation: harmonic oscillator (Peer Study Group 1, week 16), particle on a ring, particle on a sphere (rigid rotor), hydrogen atom (Active Learning Workshop 1, week 21)  Xmas break!!!

4             Beyond exact solutions: helium atom

5             Molecular orbitals: Born-Oppenheimer approximation, linear combination of atomic orbitals, secular equations, two-orbital systems (Peer Study Group 2, week 22)

6             Hückel theory for τ-electron systems; allyl radical (Active Learning Workshop 2, week 23)

7             Concluding remarks

Recommended textbooks:  Atkins Physical Chemistry – online link on Moodle (Parts of) Chapters 7-10.

Alternatively: “Quantum Mechanics for Chemists” by D. O. Hayward, RSC.

“Molecular Quantum Mechanics” by P.W Atkins and R.S. Friedman, 5th  edition, OUP, available electronically “Physical Chemistry” by P.W Atkins and J. de Paula, 8th  edition, OUP.

1. Overview

The principal aim of this course is to understand wavefunctions, how to calculate them and how to use them in chemistry. To do this we will first define some fundamental principles of quantum mechanics. To help explain these principles we will use test problems, such as the harmonic oscillator and the rigid rotor. Understanding these cases allows us to understand the electronic structure of the hydrogen atom. We will then move on to consider the electronic structure of helium atom, and an introduction to molecular orbital theory. This helps  illustrates why approximate wavefunctions can be used both qualitatively and quantitatively throughout chemistry.

“The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known,

and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved”

Dirac 1929

2. Postulates of quantum mechanics

Postulate = a stipulation, an assumption, a fundamental principle

2.1 Probability interpretation of Ψ

Postulate 1: the state of a system is fully described by a mathematical function Ψ, called the wavefunction. As an example, consider a particle which can move only in the x direction

This particle is described by a wavefunction Ψ(x).

Question: what is the probability that the particle will be found between points x and x + dx?

Answer:

This probabilistic interpretation of the wavefunction is commonly known as the Born interpretation.

Notes: 1. In this treatment we assume that the wavefunction is normalized, i.e. that the probability of finding the particle somewhere along the x direction is 1. Mathematically we write: the “bra-ket” notation first introduced by Paul Dirac.

2. The wavefunction itself has no physical meaning. It may, at any given point in space, be positive or negative, real or complex.

Ψ (x )2  = Ψ * (x )Ψ (x ) is always non-negative and real, and has the probabilistic meaning described above.

2.2 Operators and Hamiltonians

An observable is a measurable property such as bond length, dipole moment, kinetic energy etc … .

Postulate 2: every observable B is represented by an operator, and all operators can be built from the operators for position and momentum.

The operator for position in the x direction is defined as B(^) =x(^)

and for momentum in the x direction,

where and

A very important operator is the total energy operator, which is called the Hamiltonian

H(^) = T(^)+ V(^)

where H(^) = total energy operator, T(^) = kinetic energy operator and V(^) = potential energy operator.

We know that

For motion in the x direction px = mvx and hence

The role of the operator is to operate on a wavefunction to yield information associated with the observable that the operator represents.

2.3 Eigenvalue equations

An eigenvalue equation has the general form.: Bf(^) = bf where the operator B(^) acts on the eigenfunction to

regenerate f multiplied by the eigenvalue b (a constant).

Example 1: If and

and hence eax is an eigenfunction of with eigenvalue a .

Example 2: If and f = sin ax , Hence sin(ax) is not an eigenfunction of dx/d.

2.4 The Schrödinger equation

Let us now use the operator H(^) to operate on Ψ(x):

where V(^)(x)  is the potential energy operator for motion in the x direction.

If Ψ(x) is an eigenfunction of H(^) , then it is termed an exact wavefunction, and

where the eigenvalue E is an energy (recall that H(^) is an energy operator). This equation is the Schrödinger equation for a particle moving in the x direction. (If V(^)(x) is complicated, we may not be able to find an exact Ψ (x)analytically and so may only be able to find approximate wavefunctions using a computer.)

There may very well be many more wavefunctions which are eigenfunctions of H(^) , i.e. which are solutions to H(^)Ψ (x) = EΨ (x) . Any two non-degenerate solutions (i.e. solutions of different energy) are orthogonal

Any two wavefunctions are orthonormal if

where ∂jk is the Kronecker delta.

jk = 1if j is the same as k i.e. j = k (the wavefunction is normalised)  and

jk = 0 if j is different from k i.e. j k (the wavefunctions are orthogonal)

2.5 Expectation values

The expectation value of an operator B(^) for a wavefunction Ψ is denoted <B> and is defined as

where dτ tells us that the integration is being performed over all space. If the wavefunction Ψ  is normalised to 1, then the expectation value simplifies

If Ψ is an exact wavefunction, i.e. it is an eigenfunction of H(^) , and it is also an eigenfunction of B(^) such that BΨ(^) = bΨ , then

What would happen if we attempted to measure the   value of observable B? Because Ψ is an exact

wavefunction and an eigenfunction of B(^) , a series of identical experiments will all yield b i.e. they will give a single value.

Let us now consider the specific and real case of an atom or molecule with more than one electron.  This system

has a set of wavefunctions Ψn which satisfy the Schrödinger equation H(^)Ψ n = EΨn .  However, these

wavefunctions are unlikely to be eigenfunctions of of B(^) i.e. BΨ(^)n bnΨn . Under these circumstances a series of

identical experiments would not all yield the same answer but each individual experiment could give any one of

the eigenvalues b0, b1, b2 … . and the expectation value of B(^) is the average of all the values that would be

obtained from a large number of experiments.

This is represented by our final postulate 3 and its implication 3’:

Postulate 3: when a system is described by a wavefunction Ψ , the average value of the observable B in a series

of measurements is equal to the expectation value of the corresponding operator B(^) , i.e. B = Ψ B Ψ .

Postulate 3': when Ψ is an eigenfunction of B(^) , determination of B always yields one result, b.  When Ψ is not an eigenfunction of B(^) , a single measurement of B yields a single outcome which is one of the eigenvalues of B(^) ,

and a large number of measurements will yield an average of the eigenvalues of B(^) i.e.  .

2.6 The Variation Principle

Postulate 3 leads to a plausibility argument for the variation principle, which is used extensively for the

computational treatment of many-electron atoms and molecules, and is the foundation for the approximate methods for determining molecular orbitals in Section 5.

We want to find the energy of the ground state Ψ 0  , which has an associated energy E0 of a molecule which has a

set of wavefunctions Ψn which satisfy the Schrödinger equation H(^)Ψ n = En Ψ n .   As the exact wavefunctions for

many-electron systems are not known and we must employ an approximate wavefunction Ψtrial . As Ψtrial is not

exact, it will not be an eigenfunction of H(^) , and H(^)Ψtrial EΨtrial .

If we attempted to measure the energy of a hypothetical system described by Ψtrial , a series of identical

experiments would not all yield the same answer but each individual experiment could give any one of the

eigenvalues E0 , E1 , E2 …. and the expectation value of   is the average of all the values that would be obtained from a large number of experiments.

The variation theorem states that for any trial wavefunction Ψ trial , the expectation value of the energy can never be less than the true ground state energy E0 :

The expectation value of the energy is an average of the true energies of the system E0  , E1 , E2  … ., and this can never be less than E0  .



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图