代做risky asset in this economy帮做Python语言程序

1. Suppose an investor has preferences represented by the utility function

w1γ

u(w) = . 1 γ

and has wealth w0.

In the market there are two assets: a risky asset whose return can be either low, r1, or high, r2, with probabilities π and 1 π; a risk-free asset with return rf . Suppose r1 < rf < r2.

a) derive the demand for the risky asset (checking for interior and for corner solutions, if any);

b) Discuss how the demand changes with a change in welfare;

c) Discuss how the demand changes with a change in rf .

2. Consider an economy with one risk-free asset whose net return is rf = 0.05 and one risky asset whose return is either r1 = 0.01 with probability π or r2 = 0.10 with probability 1 π.

a) For which values of π does a risk neutral investor invest in the risky asset? How much would they invest?

b) For which values of π does a risk averse investor invest in the risky asset? How much would they invest?

c) Suppose an investor has preferences represented by the natural logarithm utility function, u(c) = log(c), and initial wealth equal to 10. Which share of his wealth does he invest in the risky asset? Suppose his wealth is 100. Which share of his wealth does he invest in the risky asset? Explain.

3. Consider an economy with a risk-free asset whose net return is rf , and one risky asset whose net return, r, is normally distributed, with mean E(r) and variance σ2. An investor has preferences represented by the following utility function:

u(w) = 1

γ

eγw.

The investor makes investment decisions in period 0 and only consumes in period 1.

a) Does this investor have decreasing, constant or increasing absolute risk aversion? decreasing, constant or increasing relative risk aversion?

b) Explain why this investor’s demand of the risky asset is equal to that of an investor with mean-variance utility u(w) = E(w) γ V ar(w).

c) The net return of the risky asset in this economy can be written as r = xp , where x is the payoff paid by the asset (e.g., the dividend) in period 1 and p is the price paid in period 0. Assume there is a fixed supply a¯ of the asset. Derive the equilibrium price of the risky asset, p, as a function of the expected payoff, the risk-free return, the coefficient of risk aversion and the variance of the risky return.

d) Using the result obtained in c, explain the effect of a reduction in the risk free rate on the price of the risky asset. (Note that this is equivalent to the effect of a central bank’s decision to lower interest rates on the stock market index.)

4. Consider two securities with net rates of return ri and rj. Suppose that these two securities have identical expected rates of return and identical variance. The correlation coefficient between ri and rj is ρ. Find the weighted portfolio that achieves the minimum variance. How do the weights depend on ρ?

5. Consider a two-period economy in which investors have pref- erences represented by:

ln(ct) + βE[ln(ct+1)].

The subjective discount factor is β = 0.9. The supply of the risky asset is a¯ = 1. Households have an endowment et = 10 at time t; at time t +1 their endowment et+1 is equal to 6 with probability 2/3 and 9 with probability 1/3.

In the economy there is an asset paying a payoff, xt+1, equal to 0 with probability 1/3 or to 6 with probability 2/3. Specifically, xt+1 and et+1 have the following joint distribution:

xt+1 = 0

xt+1 = 6

et+1 = 6

1/3

1/3

2/3

et+1 = 9

0

1/3

1/3

1/3

2/3

1

a) Compute the price of this asset;

b) Suppose the subjective discount factor were β = 0.8 instead of β = 0.9; would the price be lower or higher than that computed for question “a”?

c) Consider another asset with the same payoffs, 0 and 6, but with the following joint distribution:

xt+1 = 0

xt+1 = 6

et+1 = 6

1/2

0

1/2

et+1 = 9

0

1/2

1/2

1/2

1/2

1

Find the price of this asset and explain why it is higher or lower than (or equal to) the price you computed for question “a”.

d) What is the expected return of the first asset? What is the risk-free grossreturn, Rf, in this economy? Explain your results.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图