代写EEE203 Signals and Systems I Tutorial: Amplitude Modulation调试SPSS

EEE203 Signals and Systems I

Tutorial: Amplitude Modulation

Modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal (typically of very high frequency), with a modulating signal that generally contains information to be transmitted. There are two motivating reasons for modulation:

1)    Modulation allows for the use of small antennae in message transmission therefore making the application portable e.g. mobile phones.

2)    It also allows us to multiplex, or share, a communication medium among many concurrently active users through the choice of different carrier frequencies separated by a frequency gap band. This technique is known as Frequency Division Multiplexing.

Radio, television, GPS, mobile phones and all other wireless communications devices transmit information across  distances  using  electromagnetic  waves.  To  send these waves  across  long distances in free space, the frequency of the transmitted signal must be quite high compared to the frequency of the information signal. This keeps aliasing at bay as well as help keep antenna sizes small. For example, a voice signal has a bandwidth of about 4 KHz. The typical frequency of the transmitted and received signal is several hundreds of megahertz to a few gigahertz.

Antenna size is in general proportional to wavelength of the transmitted electromagnetic waves. Let us look at how the antenna size can be made smaller with higher carrier frequencies. For example, the wavelength of a 1 GHz electromagnetic wave in free space is 30 cm, whereas a 1 kHz electromagnetic wave is one million times larger, 300 km, it would be impossible to build and power such a behemoth!

Communication that uses modulation to shift the frequency spectrum of a signal is known as  carrier communication. In this mode, one of the basic parameters (amplitude, frequency, or phase) of a sinusoidal carrier of high frequency uc is varied in proportion to baseband signal m(t). We will  focus on amplitude modulation in this tutorial. We will interchangeably use the notations (u and f) to represent frequency. f denotes the frequency of a sinusoidal signal in Hz, whereas u is the  frequency in rad/sec.

1. Amplitude Modulation

Amplitude modulation is characterized by the fact that the amplitude A of the carrier signal c (t) is varied in proportion to the amplitude of the modulating (message) signal m(t). The frequency and the phase of the carrier are fixed. The carrier signal c (t) is represented as

c(t) = Acos(wct + θc).                                                                 (1)

For simplicity, we can assume that θc  = 0 in the carrier signal. If the carrier amplitude A is made directly proportional to the modulating signal m(t), we obtain the signal m(t)cos (wct). When

the carrier signal Acos(w ct) is added to this signal, the resulting amplitude modulated signal φAM (t) is represented as:

φAM (t) = (A + m(t))cos(wct).                                                 (2)

Figure 1 illustrates the amplitude modulation. The modulating (message) signal is multiplied by

the carrier signal. The modulating signal forms the envelope of the modulated signal.

Figure 1. Illustration of Amplitude Modulation.

Let the Fourier transform. of the modulating signal be denoted by M(ju), i.e.,

F

  m(t) ↔ M(jw)                                                                                    (3)

The time and frequency domain plots of the modulating signal is shown in Figure 2.

Figure 2. Modulating signal m(t) in time (left) and frequency (right).

What is the Fourier transform. of the amplitude modulated signal ΦAM(jw)? You can get a hint from the time and frequency domain plots of the modulated signal from Figure 3.

Figure 3. Modulated signal in time (left) and frequency (right).

As shown in Figure 3, there is a replication of the spectrum of the modulating signal, each centered around -ωc and ωc. A portion that lies above the ωc is called Upper Side Band (USB) and a portion lies below ωc is called Lower Side Band (LSB). For each replication the amplitude is half of the original height, i.e., reduced from to α . Why are there impulses at -ωc and ωc?

2. Amplitude Demodulation

Demodulation can be performed in two different ways.

●    Coherent Demodulation: This assumes that the carrier signal with same frequency and phase can be generated at the receiver for demodulation.

●    Non-Coherent Demodulation: This directly demodulates the received signal from its

envelope without requiring the carrier signal. The envelope detector can be implemented very inexpensively using a half wave rectifier followed by a low pass filter.

Here, we will describe coherent demodulation, as it is very similar to the modulation process and easy to demonstrate and understand. Recall the scheme of modulation shifts the spectrum  of the message signal by multiplying it with the carrier signal. Hence, demodulation requires the shifting of the spectrum back to the original location. To achieve this, we multiply again the modulated signal with the carrier signal, as described in Figure 4 and Figure 5.

Figure 4. Demodulation.

Figure 5. Frequency spectrum of modulated signal multiplied by the carrier. The dashed line indicates the frequency response of a low pass filter used to extract the demodulated signal.

The received modulated signal is φAM (t) =  (A + m(t))cos(w ct). Multiplying it with cos(w ct) results in the signal r(t) given by

r(t) = (A + m(t))cos2 (w ct) = 2/1 (A + m(t))(1 + cos(2w ct))                    (4)

What is the Fourier transform. R(jω) of r(t)?  Again you can get a hint from Figure 5.

As shown in Figure 5, one part of the demodulated signal spectrum is centered at zero frequency and the other part is centered at ±2ωc. In order to retrieve the original message signal M(jω), and to remove the high frequency components, r(t) is passed through a low pass filter with a cutoff frequency greater than the bandwidth B Hz of the message signal. What about the impulse at zero frequency? How to remove it?

3.    Modulation Index

Modulation index (µ) is defined as the ratio between the peak value of the message signal and the amplitude of the carrier signal. This indicates how much the modulated signal varies around its  original  level.  The  value  of  µ  < 1 results in under-modulation and µ >  1  results  in  over- modulation.   Over-modulation   results   in   erroneous   signal   reconstruction   if   non-coherent demodulation (envelope detection) is used, but in case of coherent demodulation, any value of µ provides reconstruction.

Figure 6 shows modulated signals with different modulation index value. The carrier signal has amplitude of 1. The modulating baseband signal has amplitude of 0.5, 1 and 1.5.

Figure 6. Modulated signal with modulation index µ = 0.5, µ = 1 and µ = 1.5

4.    Example

Suppose the modulating signal is a 100Hz cosine signal, i.e., m(t) = cos(2π100t). The signal and its Fourier transform (FFT, magnitude) are shown in Figure 7. In the frequency domain, you can see two impulses located at -100Hz and 100Hz, i.e., the frequency of the cosine signal.

Figure 7. Time domain and frequency domain plots of modulating signal

m(t) = cos(2π100t)

The modulating message signal m(t) is then modulated by a carrier signal c(t) = 2cos(2π1000t). The modulated signal φAM (t) =  (2 + m(t))cos(2π1000t) and its FFT are shown in Figure 8. In the time domain, the amplitude of the carrier signal is modulated by the message as shown by its envelope. The amplitude varies from 1 to 3 due to the 0.5 modulation index. In the frequency domain, the spectrum of the modulating signal is split into two, one half shifts to the left by 1000Hz, and the other half shifts to the right by 1000Hz. The impulses at - 1000Hz and 1000Hz are the FFT of the carrier signal c(t).

Figure 8. Time domain and frequency domain plots of modulated signal

φAM (t) = (2 + m(t))cos(2π1000t)

To demodulate the signal,  multiple  it  by cos(2π1000t),  i.e., r(t) = φAM (t) cos(2π1000t) = (2 + m(t))cos2 (2π1000t). The signal r(t) and its  FFT are shown in Figure 9. In the frequency domain, the spectrum of φAM (t) is split into two, one half shifts to the left by 1000Hz, and the other half shifts to the right by 1000Hz. Therefore, the cluster around -1000Hz in Figure 8 is shifted to -2000Hz and 0Hz, and the cluster around 1000Hz in Figure 8 is shifted to 0Hz and 2000Hz, as shown in Figure 9. Now if we pass r(t) through a  low pass filter to get rid of the two clusters around ±2000Hz, and remove the DC component (the impulse at 0Hz), and scale it properly, we can get the original signal m(t) back.

Figure 9. Time domain and frequency domain plots of demodulated signal

r(t) = φAM (t) cos(2π1000t) = (2 + m(t))cos2 (2π1000t)

One last note, the amplitude modulation scheme discussed in this tutorial is often referred to as “double sideband, full carrier” amplitude modulation. There are variations of this basic scheme.  Refer to this article for a quick introduction.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图