代做Homework 1代做Java语言

Homework 1

Due: Friday, 9/13/2024 before 11:59PM ET

Total Points: 50 (45+ 5 pts extra credit)

Write Up Instructions

Submit your completed homework to Brightspace electronically in PDF format. Any submissions that are not a PDF or not a legible PDF will not receive credit. We need to be able to read your submission to be able to grade your work.

Your write-up should contain enough information from the problem so that a reader doesn’t need to return to the text to know what the problem is (it is a good habit to rewrite each problem prior to solving it). There is no general rule for how much information from the problem to include, but it should be possible to read your  homework and ascertain what the problem was and what your solution is accomplishing. When writing up the solution, you may hand write the solutions and submit a scanned PDF copy. If you hand write your solutions, make sure that you write clearly, and your writing is legible. Double check your scans to make sure that your scanned copy is legible.

After you submit your work, make sure the file is visible. Download your submitted copy, open it, and see whether you submitted the correct file and whether your submitted file has not been corrupted during the upload. You can upload your submission multiple times. Only the last file will be graded. Keep in mind that if your completed work consists of multiple pages and you submit a separate file for each page, only the last file submitted will be graded. In this case, only one page of your submission would be graded.

Be careful about potential plagiarism. Your submitted work must be your own.

Late Policy

Late homework will be accepted up to 1 day late for a penalty of 25% of the total points.  For example, if the homework is worth 100 points and you submit it one day late, you will receive the maximum of (your score earned minus 25 points) and 0 points.

Assigned Problems

Problem 1. (5 pts = 1×5) State whether each of the following sentences is a proposition or not. Then, if the sentence is a proposition, write its negation. Otherwise, provide a brief justification why the sentence is not a proposition.

a)   Submit your homework on time.

b)    Is it raining today?

c)    5 + x = 10.

d)   Sky is pink.

e)    10 + 11 = 25.

Problem 2. (5 pts = 1×5) Assume the propositions p, q, r, and s have the following truth values:

p : False (F).                         • q : True (T).                          • r : False (F).                          • s : True (T)

Evaluate the truth value for each of the following compound propositions.  Show your work for your evaluation.

a)  p ⊕ q Λ r

b)  (p q) Λ r

c)  pv q ↔ q → p

d)  ¬pv q r → s Λ ¬q

e)  ¬p v (¬q r) → (s Λ ¬q)

Problem 3. (5 pts = 4 + 1) Answer the following questions.

a)    Construct a truth table for the expression (p q) → (¬p ¬q).

b)    For the following truth table, give a logical expression whose truth table is the same as the one given.

p

q

?

F

F

T

F

T

T

T

F

T

T

T

F

Problem 4. (10 pts = 2×5) Consider the following propositions:

•  p : You share your solutions with your classmates.

•  q : You get an academic integrity violation case against you.

•  r : You pass the course.

For each of the following problem, provide the corresponding English sentence.

a)  p → q

b)  q → ¬r

c)   ¬(q Λ r).

d)    (p Λ q) v r

e)    ¬r ↔ (p ^ q)

Problem 5. (10 pts = 2×5) Consider the following true propositions:

h : John is healthy.

w : John is wealthy.

s : John is wise.

For each of the following sentences write, symbolically, the compound proposition that corresponds to the given sentence in English as it is written (do not change the order or form of the expression).

a)   John is healthy and wealthy but not wise.

b)   John is not wealthy but he is healthy and wise.

c)    John is neither healthy, wealthy, nor wise.

d)   John is neither wealthy nor wise, but he is healthy.

e)   John is wealthy, but he is not both healthy and wise.

Problem 6. (5 pts) Using a truth table determine whether (¬p v q) ↔ (p ^ ¬q) is a tautology, or a contradiction, or a contingency.

Problem 7. Using Equivalence Laws, show that -

a)    (5 pts)   ¬(p v (¬p ^ q)) is logically equivalent to ¬p ^ ¬q.

b)   (Extra Credit)(5 pts)    ¬(p v ¬( p ^ q )) is logically equivalent to F (i.e. a contradiction).



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图