代写Problem Set 1 for CaSB 150代做留学生Matlab编程

Problem Set 1 for CaSB 150

Due April 17, 2025

(Late problem sets will lose 10 points per day)

1.   A. When an exponentially growing number of cases for a disease—imagine a disease spreading like COVID-19—is increasing every 5 days by a factor of e=Exp(1)=2.71828..., express the total number of cases, N(t), as the solution for continuous exponential growth. Assume the infection started with one person: N(0)=1. What is the value for the per-capita (a.k.a. intrinsic) growth rate, r, of the disease? Let the units of time, t, be in days for your answer.

B.  Write down an expression for how many new cases you should expect to appear on day t using your expression from part A. What is the fraction of new cases on day t relative to the total number of cases on day t?

C. Assuming for now that everyone who is infected gets tested immediately and that the result is processed and reported 3 days later, write down a formula for how many positive test results, R(t), will be reported on day t.

2.   A. If 0.5% of cases result in death and if death always happens 3 weeks after

infection, write down a formula for the number of deaths, D(t), on day t.

B. Evaluate the number value of your expressions from problems 1 and 2.A

when the infection has been spreading for 5 days and for 100 days.

Comment on the meaning of the numbers and any unusual values.

3.          Consider the case that growth rate is exponential but modified by being multiplied by another function with a negative exponential

where τ is a time constant, r is a constant, N(t) is population size, and t is time.

a.   At early times when N(t)<< N(τ), what does this equation simplify to?  Solve the simplified equation for N(t) and describe the growth for this case. (Hint: To simplify, recall that Taylor series can often be helpful.)

b.   At long times when N(t)>>N(τ), what does this equation simplify to?  Solve the simplified equation for N(t) and describe the growth for this case.

c.    Sketch a graph for dN(t)/dt versus time based on your answers to parts a. and b.?

d.   For part a. is there a different mathematical space in which you can find a function that is linear versus time to obtain a perfect approximation to the equation? If so, what is that space? Or is the original linear space already the best space possible? (This is equivalent to looking at ln(N(t)) versus t space for exponential growth as we did in class, which works because the lnN(t) is linear with time, meaning dln(N(t))/dt is constant.)

4.   A.    Analyze the data for new confirmed cases per day of COVID-19 in the

table below to see if it is exponential? If not, formulate and solve a differential equation that would better describe these data? Repeat the same analysis but for the data for testing capacity—maximum number of tests processed per day—in the same table. Comparing the growth rate of testing capacity with the growth rate of new confirmed cases, what can you conclude about the driving cause of the growth rate for the data for confirmed cases?

B.   Consider the cases where the number of new cases of infected individuals each day has flattened and is now constant at about 2,000,000 per day in   the nation. If 20% eventually show symptoms and 50% of those with symptoms eventually get tested, how many new cases per day would eventually be reported?

C.   In contrast to B., if we can only conduct 150,000 tests per day in the

nation, we only test people with respiratory symptoms, and about 30% of people with respiratory symptoms have COVID-19 (as opposed to allergies, flu, etc.), how many new cases per day would be reported?

Given this testing capacity and approach, could you distinguish between   new cases due to exponential growth of disease spread versus a flattened curve (such as a constant number of new cases each day as in B.)?

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图