代写COMS 4701 FINAL PRACTICE EXAM SPRING 2024代写留学生Matlab程序

COMS 4701

FINAL PRACTICE EXAM

SPRING 2024

1.Consider a second-order hidden Markov model, in which Xt generally depends on both  Xt-1  and Xt-2.The initial distribution is    Pr(Xo,X₁),transition probabilities are Pr(Xt|Xt-1,Xt-2)for t≥2, and observation probabilities are Pr(E|Xt)for   t≥1.

(a)Circle either true or false for each of the conditional independence statements below that are guaranteed to hold in the second-order HMM.

(b)  Give a minimal expression for Pr(X₁,...,X₅,e₁,...,e₅) using the HMM parameters. (Multiplica- tion of CPTs will be interpreted as multiplication of factors.)

(c)   Suppose we have αt=Pr(Xt-1,Xt|e1:t)and we want to compute αt+1 =Pr(Xt,Xt+1|e1:t+1). Give a minimal expression for αt+1 using at and the HMM parameters,normalizing if necessary.

2. Flying during the holidays can be a stressful time,since so many things can go wrong. Bad weather (W) or mechanical airplane problems (M) can delay your flight (D); mechanical problems can also affect the chances of your baggage (B) being lost. Suppose you have a probabilistic model of the relationships  between these Boolean events as follows:

(a)   Draw a representative Bayesian network of this model. Be sure to label your nodes and indicate directionalityon the edges.

(b)   Are weather (W) and whether your baggage (B) makes it back safely with you independent of each other?

(c)   Suppose  you  are  sitting  at  the   airport  and  you  tell  your   family  that  your   fight  was   indeed  delayed. Given  this  information,are  weather  and  baggage  arriving  safely  conditionally  independent  of  each other?

(d)   Write  an  analytical expression for Pr(W,B|D=+d), the  joint distribution of  weather  and baggage given that  your flight  is   delayed.Your expression should only include sums,products, and/or quotients of  terms fro  the model described  above.

(e)   Numerically compute  Pr(+w,+b,+d),the  joint  probability that bad weatheroccurred,your    bag- gage  got  lost,and  your  flight  was  delayed.

3.   A   recycling robot is trying to classify the objects that it sees as bottles(B=+b)or notbottles (B=-b).The robot considers three  binary  features:whether  the object is rounded(R=+r)or not (R=-r),whether  it  is  made of glass(G=+9)or plastic(G=-9),and whether it is small  (S=+8) or   large(S=-s).The robot  is given a labeled data set as follows:

(a)   Suppose we learn a  naive Bayes classifier from this data.Find the numerical parameters that would be learned usingα=1    smoothing. Please write your answers as reduced fractions.

(b)   Using   the   learned   model,how   does   the   robot   classify   the   feature   set (一r,-g,-s)?

(c)  Suppose  our  data   set  did  not  include  the  class  labels.If  we   were   to   learn   a  naive  Bayes  model using   expectation-maximization,are   we    guaranteed   to   recover   the    maximum-likelihood   parameters learned   from  the  labeled   data   set?Why   or  why  not?

(d)   Convert the  features to  numerical    values    by     treating    +as     +1     and-as-1.Consider    a     linear classifier    that     predicts B=-b    if     fw(x)≤0    and     B=+b     otherwise.What     is    the     classification accuracy   on   the   data   set   given  a  model   with   weight   vector   w=(1,1,0,1)?

(e)   Again   starting   from   w,compute   the   update   made   to   w   using   the   perceptron   learning   rule   after the  first  mistake  made  on  the  data  set.

(f)   A  sigmoid  activation  function  would  still  yield  the  same  predictions  and  same  classification  accu- racy  as  the  hard  threshold  function  described  above.Give  two  different  advantages  that  a  sigmoid function  has   over  the  hard  threshold.

(g)   Suppose we pass our data set through  the neural network below,where  x  is  R,y  is  G,and  z  is  S. Find  the  individual  outputs  of each forward pass.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图