代做Mechanical Engineering帮做Python语言程序

Q1 Consider the flexural vibration of a beam, of length l, cross section area A, density ρ, second moment of area I and Young’s Modulus E, that is simply-supported at both ends but with a torsional spring, of stiffness kt attached at the right-hand end, as shown in figure Q1.

(a) The general solution for the flexural vibration of a beam is given by

where  are constants and  Clearly stat-ing the boundary conditions, derive the frequency equation for the beam in terms of kt and αl.   (7 marks)

(b) It is proposed that an appropriate function for a guessed modeshape to be used in Rayleigh’s method is x 4 + ax3 + bx2 + cx + d. For the case where kt = , using the boundary conditions suggest appropriate values for a, b, c and d. Comment on whether this would also be an appropriate guess for the beam if a lumped mass was added to the righthand end of it.

Note that you are not expected to apply Rayleigh’s method. (4 marks)

(c) For the case where kt =, using a single element FE model, calculate an estimate of the first natural frequency. Suggest how this could be used alongside the answer to part (a) to give an accurate estimate for the first natural frequency of the beam. Comment on the likely accuracy of this estimated natural frequency compared to the Rayleigh’s method estimate that could be calculated using the guessed modeshape in part (b). (9 marks)

The mass and stiffness matrices for an element of beam of length L subject to flexural vibration are:

Q2 Consider the following open loop transfer function (OLTF) where a plant Gp (s) is controlled by a proportional controller Gp (s) = K.

(a) For K = 1 sketch the polar plot of the OLTF and determine whether the closed loop is stable by applying the Nyquist criterion (note: consider s = 0 a stable pole). In addition, estimate, using your sketch and/or calculations, the gain margin and phase margin of the closed loop.

For full marks you need to include the expressions of the OLTF gain and phase and fill in the table below:

(10 marks)

(b) Discuss how the phase margin and gain margin will evolve if the chosen K is greater than 1. Reflect on the possibility of achieving non-oscillatory response for any value of K and suggest, if needed, changes in the controller that could deliver over-damped behaviour.   (10 marks)




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图