代做FIT5147 Data Exploration and Visualisation Semester 1, 2025代写留学生Java程序

FIT5147 Data Exploration and Visualisation

Semester 1, 2025

FIT5147 Data Visualisation Project (DVP)

In this project, you are asked to create an interactive narrative visualisation that communicates some of your findings from the Data Exploration Project.

It is an individual assignment and worth 40% of your total mark for FIT5147. There are two submissions:

●    DVP Part 1: Design (Presentation): 3% of the 40%, due Week 11

●    DVP Part 2: Visualisation Project Submission (report and source code): 37% of the 40%, due start of exam period.

Relevant Learning Outcomes

   Choose appropriate data visualisations

   Critically evaluate and interpret a data visualisation

●    Implement interactive data visualisations using R (Shiny) or JavaScript (D3).

Overview of the Tasks

1.    Identify which findings from your Data Exploration Project you wish to communicate. You

can be selective, and you do not need to share everything you have found. The visualisations and accompanying narration should reflect the answers to (one or more of) the questions in  your Project Proposal.

2.    Clearly define your intended audience. The audience might be the elderly, young children, your classmates, the general public, politicians or whoever you like, although the choice should make sense for the data and topic of choice. Your subsequent interactive narrative visualisation submission should be designed specifically for the intended audience.

3.    Design an interactive narrative visualisation using the Five Design Sheet methodology.

4.    Prepare a short presentation based on your five design sheets (one sheet per slide).

5.    Submit the five design sheet slides for your presentation in Week 11.

6.    Present your presentation to your Applied Session in Week 11 or 12.

7.    Implement your visualisation using either R (Shiny) or JavaScript (D3). The use of other

visualisation libraries and packages is subject to approval by your Teaching Associate (see the section “Notes on Implementation”). Note that you are not allowed to use R Markdown.

8.    Write a report and export it to PDF.

9.    Submit your report and your source code (see the section “How to Submit”) at the start of the exam period.

Presentation Details

The presentation is an opportunity to gain feedback on your designs from your teaching associates and peers. Prepare a three minute presentation based on your five design sheets.  Your presentation should consist of 6 slides covering:

1.    An Introduction: Name, project title, aims and motivation (one slide)

2.    Each of your Five Design Sheets (i.e., one sheet per slide).

The five design sheet methodology must be completely followed. All components should be legible and readable.  For your sheets you may use pen and paper, and then digitise them (at high quality to ensure readability), or use digital pen technology. If you do import any images from external sources to your sheets you must reference the source appropriately in the relevant design sheet.

The design slides you present in person in your Applied session must match those submitted on Moodle. If you do not manage your presentation and go overtime, your Teaching Associate may stop  your presentation, which may result in loss of marks and restrict the feedback you get on elements of your design.

Report Structure

Write a report of up to 15 pages (excluding cover page, table of contents, bibliography, and appendix, which together have a limit of 10 pages) that consists of the following sections:

1.    Project title

Title of your narrative visualisation. This should be included in the cover page.

2.     Your identity

Your full name, student ID, Applied session number, and Teaching Associate’s name. This should be included in the cover page.

3.    Introduction [Approx. ½-1 page]

A precise and succinct description of what findings and messages you wanted your narrative visualisation to convey, and who your intended audience is.

4.    Design Process [Approx. 3-5 pages]

A description and justification of your narrative visualisation design process. This should briefly refer to each of your five design sheets (you  must provide each of your 5 design sheets in the Appendix), and justify your design choices based on the theoretical content of the unit (throughout Weeks 1-12), for instance: identifying consistency in your design and interaction; choice of visualisation, choice of visual variables, reasons for a particular colour palette; justifying your layout structure, choice of typography,  aspects of Munzner’s what-why-how framework, choice of genre and/or narrative style, and aspects of the human visual system; etc. It is important that this section is  not simply a description of which charts you chose in the different sheets, but must justify your ideas and the process that lead you to your final design choices. Be sure to cite suitable references. All visualisations in your design process should be relevant for your data and there should be a clear indication of how your choice of audience has influenced your design process.

5.    Implementation

5.1. Technical Implementation [Approx. ½ - 1 page]

This section contains a high-level description of your implementation, including libraries used, references to external code sources such as templates, and reasons for any differences between your final design (that was justified and explained in Design Process) and the implemented design (described in the following section), if applicable. You are not required to explain the code in detail.  You should briefly explain the reasons why your project was     challenging (e.g., extensive wrangling was required, advanced use of D3, etc. - see Marking  Criteria 4 for further information).

5.2. Interactive Narrative Visualisation Implementation [Approx. 2-5 pages]

Document and describe your final implemented submission, including screenshots of your final implementation where suitable. This  section should clearly explain the final implementation and how its narrative portrays the data insights to your audience.

5.3. Using the Implementation  [Approx. 1 page]

This section contains instructions for how to run, view and use your interactive narrative visualisation. This should emphasise any parts of your visualisation that may be easily missed by a reader (e.g., some interaction you have implemented that might not be immediately visible).

6.    Conclusion  [Approx. ½ page]

Summarise your findings and what you have achieved with your narrative visualisation.

Reflect on what you have learnt in this project, including what in hindsight you might have done differently to improve the result and any future work that you would like to do.

7.    Bibliography

Appropriate references of all resources that have influenced your work in IEEE or APA style (refer to the Monash Uni library's guide page for Monash citing and reference style). This should include any code templates, design influences and references to design theory, as well as any sources that have influenced any data insights.

8.   Appendix

Include your five design sheets in the Appendix. Make sure you provide clear images and any handwriting is readable.

Your report should contain high-quality images of your narrative visualisation and five design sheets, indicating interaction when relevant. Where possible, avoid using a single screenshot of the entire page since the resolution might be low; instead, crop and explain individual sections of the page. It is also recommended that you export your PDF using a local word processor (e.g., Microsoft Word), as exporting your document as a PDF directly from Google Docs will result in low-quality images. Make sure you can read and understand the PDF document and its images at A4 size without requiring further enlargement.

Notes on the Design

●   The visualisation must be a narrative. Elements of the design must tell the data story, using  text and visualisation techniques to narrate how the data and the findings of the exploration process enable the questions about the topic of interest to be answered.

   Your design must follow the Five Design Sheet process and provide all the required

information according to the 5dS template. The designs for Sheets 2-4 must be distinct from  each other. The final design on Sheet 5 is expected to be a refinement of one of those sheets (or a combination of components from each).

●    Each design for Sheets 2-4 is expected to complete the narrative independently of the

other designs. No design sheet should just respond to one of the questions or findings narrated by the visualisation. No design sheet should consist of a single visualisation technique, e.g., one graph. Every design should resemble a complete solution with a clear layout that follows a particular narration style.

●    In Sheet 5 (and your final implementation) your final design should include a location to

provide information about the data used in this work and a link to the original data source. It should also include how the interface will provide guidance to the audience on using the interactive narrative visualisation.

●   Any differences between the final design you submitted and presented in Week 11/12 and that submitted in your report (Appendix) in light of feedback to your presentation should be justified and explained in the Implementation section.

Notes on the Implementation

●   Your implemented narrative visualisation should be based on the result of your Five Design Sheet process. It does not need to follow it exactly, however it should resemble the final design in Sheet 5. Small changes to your final design are allowed (e.g., layout, visualisation choices, navigation method, colour) but any such differences between your design and how it was implemented must be explained and justified in the Implementation section of your report.

●   As a rule of thumb, all visualisation packages and libraries that are included in this unit are allowed for your implementation. This includes, but is not limited to:

○    For R Shiny: ggplot2, ggmap, ggraph, Leaflet, Plotly, igraph, wordcloud, etc.

○    For D3: D3 itself, Leaflet, MapBox, etc. Libraries which act as high-level wrappers for D3 are NOT allowed (e.g., C3.js, dimple).

If you are unsure if a particular visualisation package or library is allowed, please discuss it with your Teaching Associate, or ask on the Ed discussion board.

●   Tools or packages used for data wrangling, data cleaning, Shiny theming, HTML5 templating, CSS styling, etc. are not subject to these rules and can be used freely (i.e., for anything other than the visualisations themselves). However, you should not use server-side code, like Django or node.js, when implementing your design. Any data used for your DVP must be read from the files submitted with your code.

●    For performance reasons, it is recommended that you pre-format all of your data files before loading them into R Shiny or D3. In other words, all data wrangling and cleaning steps (if any) should be performed outside of your narrative visualisation code. You are not required to include the code for data wrangling and cleaning as part of your submission. However, if you have done considerable work since your Data Exploration Project, then you should describe  these steps in your DVP report (see Marking Criteria 3).

Marking Criteria

DVP Part 1: Design (Presentation) [3%]

●   Quality of oral presentation (confidence, speed, voice) and quality of slides (legibility, design, images) [1%].

●    Logical structure [1%].

●   Choice of content (completeness, appropriate level, discussion of design and implementation alternatives) [1%].

DVP Part 2: Visualisation Project Submission (Report and Source Code) [37%]

When grading your submission, all components (i.e., the quality of your narrative visualisation design, technical implementation, and the written report) are taken into account:

1.    Project Continuity [2%]

The degree to which the narrative visualisation presents data insights from questions proposed in your submitted Project Proposal and discovered during your Data Exploration Project. This explanation should be clearly outlined in your Introduction.  Further exploration or improvements can be done post DEP, when necessary, but must be described and justified within the Technical Implementation section.

2.    Design Process and Justifications [8%]

a.    Appropriate use of the Five Design Sheet methodology and evaluation of your alternative designs [5%].

b.    Relevance and quality of your justification of the final design based on data visualisation theory taught in the unit (Weeks 1-11). [3%].

3.    Implementation of Final Visualisation Design [12%]

a.    Quality of implemented narrative: clear and appropriate guidance and narrative to your audience. This should connect the data to the visualisation(s) through a narrative story.  Clean and appropriate layout for the implemented narrative including appropriate sightlines and hierarchy of typography. Limited jargon. [2%].

b.    Quality and appropriateness of implemented interactive visualisation: provision of

appropriate context, attention to detail, appropriate and clean visualisation layout(s) and use of typography, appropriate and consistent use of colour and other visual variables, appropriate information about the data source(s), and appropriateness for the intended audience [5%]

c.    Correctness and robustness, performance and usability of the implementation [3%].

d.    Code comments and code quality [2%].

4.    Project Difficulty [10%]

The degree to which the visualisation project demonstrates sophistication and complexity in terms of its technical, theoretical and design implementation. Marks for this section will be allocated for the following:

a.    Sophisticated use of different data sources, in particular non-tabular data [2%].

b.    Dealing with very large datasets [2%].

c.    Advanced implementation of D3 / R (Shiny) [3%]

d.    Sophisticated user interaction (e.g., animation, linked interaction) [3%]

Note: Other technical, theoretical and/or design aspects will be considered for marks in this difficulty section. It is therefore crucial to make the marker aware of the complexity of your project by ensuring you mention and justify all elements in your written report.

5.    Project Report [5%]

a.    Quality of writing, logical structure, quality and suitability of images, grammar/spelling, appropriate figure and table use with clear captions and in-text referencing (e.g. Figure 1, Table 1), appropriate academic referencing (APA or IEEE) and citations [1.5%].

Note: Pay particular attention to your visualisations in your report. They must be clear and legible with readable font and font size, clear titles, legends and labelled axes in written English with no special characters such as underscores.

b.   Completeness, i.e., all the above sections should be submitted and completed.  [3.5%].   Note: Pay attention to the criteria expected and page limit expectations for each section. This forms a guide for completeness.

Check Your Code!

Please be sure to check that your code runs correctly. If possible, check if your code works on other computers and operating systems. If you do not have access to another computer you can try checking via the Monash MoVE platform.

If your code requires some steps for it to run, then be sure to make these very clear in readme notes for your marker and describe this in the User Guide section of your report. Your code must run on your marker’s computer on the first attempt for us to be able to mark your submission. If your submission does not run correctly, 5% (from the Implementation mark) will be instantly deducted from your grade. If after some troubleshooting your grader is still unable to get the code to run, further deductions will occur as we will not be able to fully grade your interactive narrative visualisation.

Your code must also contain meaningful comments and be formatted and designed in such a way that it is easily readable and understandable.

Originality

As this is academic work, it must be original and must clearly indicate what elements were your work and what are based on someone-else’s work. If you are including facts, data, opinions or any other written or graphical information from another source, you must cite the source and reference the bibliographic details for the source, using the APA or IEEE style. guide. This includes any third-party programming code or software you use in your data exploration and analysis. If you directly quote or replicate any material from a reference, you must do so in a manner appropriate to the APA or IEEE style. guide. Be sure to acknowledge sources that influence your code through your code comments and references in your bibliography. Do not copy complete designs from any external sources.

If you are retaking this unit from a previous semester, please ensure you choose a completely new design and new visualisation code. The text, design and code cannot have been used in any other unit. Likewise, you cannot reuse any code or written content that you have used in any previous assessment tasks for any units. The only self-plagiarism that is allowed is the questions you set in your Project Proposal this semester and reusing some R code from your Data Exploration Project this semester (if you wish). Any other written content from your Proposal or DEP may not be reused. It  must be rewritten for your DVP.

Generative Artificial Intelligence (Generative AI) software or systems like ChatGPT or Midjourney cannot be used for any part of this assessment task, including (but not limited to) generating written or visual components of your submitted work.

If your work is believed to not be original, due to potential instances of plagiarism, collusion with other students or contract cheating, your academic integrity will be reviewed. If any breaches of the academic integrity are confirmed, penalties may be applied to your assignment, the unit and/or even your enrolment in your course.

Submission Due Dates

●    Part 1: Design: Submit your presentation slides to Moodle, due Week 11 (see Moodle for   date and time). Presentations will take place during Week 11 & 12 in your Applied session. Attendance for both weeks is mandatory.

●    Part 2: Submit a PDF report and a zip file containing your code and the data to Moodle, due the first week of exam period (see Moodle for date and time).

NOTE: All submission times are in Melbourne, Australia local time.

How to Submit

Presentation

1.    Prepare a PDF file containing all five of your design sheets.

2.    Name the file StudentName_StudentID_Presentation.pdf

3.    Submit it via Moodle under Assessments/DVP Part 1: Design (3%).

Report and Source Code

1.    Prepare a PDF report (max 15 pages) and a ZIP file containing the source code for your narrative visualisation and any data files that are required to run it.

2.    Name the files using the following format:

a.   StudentName_StudentID_Report.pdf

b.   StudentName_StudentID_Code.zip

3.    Submit both files via Moodle under Assessments/DVP Part 2: Visualisation Project

Submission (37%). These must be two separate filesDo not put your PDF inside of the ZIP  archive. Note that only .zip is recommended, and you should not use other extensions such as .rar or .7z.

Notes on submissions:

●   We cannot mark any work submitted via email or stored on file hosts such as Google Drive or Dropbox. Please ensure that you submit correctly via Moodle since it is only in this process that you complete the required student declaration, without which your work cannot be assessed.

   Your assignment MUST show a status of "Submitted for grading" before it will be marked.

If your submission shows a status of "Draft (not submitted)”, it will not be assessed and will  incur late penalties if submitted after the due date/time. Note that this applies even if your file was uploaded to Moodle as draft prior to the due date.

●    It is your responsibility to ENSURE that the files you submit are the correct files. We strongly recommend after uploading a submission, and prior to actually submitting on Moodle, that you download the submission and double-check its contents.

●   Turnitin is used to help staff review the academic integrity for all submissions. It may not be shared with students unless a student’s work is under review.

   There is a maximum file size of 500MB. This is rarely hit by students in the unit, but it can

cause an issue if your data files are very large. If you believe the limit affects you, check your zipped folder size and look to reduce the size of your data (e.g., by removing columns you are not using). If this is not possible, then only then can you consider storing your data remotely,  e.g., via Google Drive, but be sure to test your code and provide access. Be sure to note this restriction in your code comments and any instructions, if needed. If access and instructions   are not provided, your mark will be penalised.

   You do not need to publish your app on the web.

Late Submissions and Special Consideration

Design Presentation

   We encourage everyone to submit their presentation slides on time.

All Presentation Slides submitted late will receive zero marks.

Report and Source Code

●   Assessments received after the submission deadline, or after the extended submission date for those with special consideration, will be penalised 5% of the available total marks per day up to a maximum of seven days. Submissions more than seven days after the due date will not be graded.

●    For information on eligibility for Extensions and Special Consideration, please refer to the relevant section on the Assessment page on Moodle.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图