代写COSC3000 S1 2025 Visualisation project代做Python编程

COSC3000 S1 2025

Visualisation project

DUE 15TH APRIL, 2025 OR 16TH MAY, 2025: These are the two dates by which you will submit the visualisation project and the computer graphics project. You can choose which of the two projects you will submit by the earlier date (15/4) and which by the later date (16/5).

Task

Data from a UQ PhD project is provided. The data are from play sessions, each with a child with autism playing with a typically-developing peer play partner. Some of the peer play partners were trained, and some untrained (control group), and the level of social interaction and cognitive play were measured to determine the impact of the training of the peers.

The thesis (serene_choi_thesis.pdf), and a book chapter (serene_choi_nova_chapter.pdf) with a more compact version of the results and discussion and simplified figures are provided. The data is plotted in chapter 7 (pp 145-194) of the thesis.

Analyse and visualise the data, to present the results appropriately for a book chapter or paper like the provided book chapter (for print or online reading) or a conference or seminar presentation of those results (for projection)

You should make the following improvements:

•    Use colour.

•    Make it visually obvious whether the changes are statistically significant at the 0.05 level.

•    The results showing the overall social and cognitive interaction in the book chapter and thesis don’t show the individual session results (in the thesis, the individual session results are shown for the specific types of social and cognitive behavior. (see section 7.4 in the thesis). Make test visualisations to see if the individual session data can be shown easily for the overall social and cognitive behavior.

•    The weights used to convert the data to an overall cognitive and social score for each session (see table 5.6 (pg 120) in the thesis, or table 8 in the book chapter; note that the “non-play” and “stereotype” weights are the wrong way around – they should be 0 and - 1 rather than -1 and 0 ) could be chosen to have different values. Make a visualization showing the effect of reasonable variation in these weights on the results.

Your project report should show your visualisations, and give explanations of your design and reasoning.

The data

While there are relatively few play sessions, you can assume that the means are normally distributed and therefore use the standard errors in means to determine confidence intervals. If you prefer, you can use appropriate small-sample methods. A Matlab file and a python file to read and process the data is provided.

The names of the children involved in the experiment have been anonymised in the data files.   Children with names beginning with A-E are the children with autism, U-Z the trained peer play partners, and L-P the untrained peer play partners. The Matlab read_dyad_data function can be used to read the data for all pairs:

t1 = read_dyad_data('albert','ulrich');

t2 = read_dyad_data('barry','viola');

t3 = read_dyad_data('chris','wendy');

t5 = read_dyad_data('dana','xavier');

warning off

t4a = read_dyad_data('ellie','yoshi');

t4b = read_dyad_data('ellie','zara');

warning on

u1 = read_dyad_data('albert','lydia');

u2 = read_dyad_data('barry','mario');

u3 = read_dyad_data('chris','nellie');

u5 = read_dyad_data('dana','oscar');

u4 = read_dyad_data('ellie','peter');

Note that the data for Ellie was omitted from the original figures, since the original trained peer withdrew from the project. The data is stored in the assigned variables as structures. The main data of interest in the variable t1 above will be in

t1.score

t1.score_error

t1.session_score

etc., where “score” is the average score over sessions, “score_error” is the standard error in that average, and “session_score” is the scores for the individual sessions. There are 8 groups in each (cognitive/social interaction, indoor/outdoor, pre-training/post-training), which you can access like:

t1.score.cog_in_pre

etc. If you are using Matlab but haven’t used structures before, you might like to try the command fieldnames, e.g.,

fieldnames(t1)

Feel free to ask questions about the data and how to read it in the labs and on the discussion board.

Marking

The project is worth 0-8 marks:

0: fail

1-3: 4 and low 5 – major errors or omissions in the required tasks

4: high 5 – required tasks are all completed, but there is no evidence of further achievement or deeper understanding

5-8: 6 and 7 – required tasks are all completed, and work shows frequent or consistent evidence of advanced skills/understanding.

You must pass the project (i.e., obtain 1 mark or more) to pass the course.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图