代写ECON1064 – Forecasting and Quantitative Analysis Assessment 3代做R编程

ECON1064 – Forecasting and Quantitative Analysis

Assessment 3: Final Assessment

Instructions:

This assignment is to be completed individually. It involves analysing data, estimating forecasting models, carrying our appropriate tests, comparing models on the basis of accuracy measures and interpreting results.

Submission: Via Assignments folder in Canvas.

Marks: The assessment is worth 40 marks and accounts for 40% of the total grade for this course.

Academic integrity: This is an individual piece of assessment. Submission will be verified via Turnitin for any form. of plagiarism. The assessment should contain your own work and  you can’t copy or have someone else complete any part of the work for you. By submitting this assessment, you are declaring that you have read, understood and you agree to the content and expectations of the Assessment declaration:

https://www.rmit.edu.au/students/my-course/assessment-results/assessment

Presentation Instructions:

You will submit two files:

1)  An R file with all the codes, clearly presented. Your code should run without errors.

2)  A Word (.doc or .docx) or PDF (.pdf) file where you will answer the questions in the order that they have been asked. Your document should comply with the following  presentation standards:

a)  Typed using a standard professional font type. Font “Arial” size 11 is recommended.

b)   Pages should be numbered.

c)   Label your answer to each question clearly – e.g., Question 1 a.

d)  Graphs and tables should be clearly labelled and presented.

e)  Your work should be well-presented with no spelling, typographical and grammatical errors.

f)   Answer the questions in a new Word document. DO NOT copy the questions as this will affect your Turnitin score.

Three files are available to you on Canvas:

1.   Tourist_data.xls

2.   My_data_SIM.xls

3.   Final Assessment.R

The Tourist_data.xls dataset contains the number of short-term visitors arriving in Australia from selected countries between January 1991 and December 2019. The data is sourced from the Australian Bureau of Statistics (https://www.abs.gov.au/statistics/industry/tourism-and- transport/overseas-arrivals-and-departures-australia/latest-release#data-downloads). Your task is to analyse the data, generate forecasts, conduct relevant tests, perform. diagnostic analyses, and produce accuracy measures to compare different models.

R codes (5 marks): A template, Final Assessment.R is provided. It includes codes for reading the data. You will first locate the Country ID (a unique identifier for each country in tourist_data.xls) that corresponds to your student ID in My_data_SIM.xls. You will then enter this Country ID into the R file to extract data for your assigned country. You will save your R template as FamilyName_StudentID.R. To score well,

1.   ensure the code runs smoothly in a single execution.

2.   clearly present your code, labelling responses appropriately (e.g., Question 1, Question 2 etc).

3.   include comments where necessary, to document your work and provide clarifications.

Part A (17 marks): The aim in this part ofthe assignment is to understand the data, perform transformation (if required), and use simple forecasting models to produce forecasts.

Question 1

Produce appropriate plots in order to become familiar with your data. Make sure you label your axes and plots appropriately. Comment on the plots. What do you see? (50 words per plot). (5 marks)

Question 2

Would transforming your data be useful? If required, compare two transformations graphically. Choose the best transformation, justifying your choice (100 words). (3 marks)

Question 3

Apply the two most appropriate benchmark (simple forecasting) methods, justifying your choices (100 words). (2 marks)

Question 4

Perform. a thorough residual analysis for each model. Do the residuals appear to be white noise? (100 words). (3 marks)

Question 5

Generate and plot forecasts and forecast intervals for the next 2 years from the two benchmark methods, also plotting the observed data. You may choose to plot on a shorter period of say 5 last years for clearer visualisation. Compare and discuss your findings, commenting on the merits/limitations of either or both modelling approaches (100 words). (4 marks)

Part B (10 marks): The aim in this part ofthe assignment is to build an ARIMA model and use it to forecast.

Question 6

Visually inspect your transformed data and decide what differencing is required to achieve stationarity. Analyse using relevant plots at every step, commenting on each plot and justifying your actions. (50 words per plot). (3 marks)

Question 7

Estimate an ARIMA model using the auto-ARIMA function in R. Tabulate your results. (1 mark)

Question 8

Perform. a thorough residual diagnostics analysis for your estimated model. Discuss your results. (100 words) (3 marks).

Question 9

Generate and plot forecasts and forecast intervals for the next two years. Comment on the results (50 words). (3 marks)

Part C (8 marks): You have now built three models with your dataset. Nest, the aim is to evaluate the three models.

Question 10

Create a training set with your data by leaving two years’worth of observations as the test set. (1 mark)

Question 11

Generate forecasts for the last two years (the period of the test set), from the three models you have estimated in Parts A (two benchmark models) & B (ARIMA model).  Plot the forecasts (both point forecasts and prediction intervals) together with the observed data and comment on these (100 words). You may choose to plot on a shorter period of say 5 last years for clearer visualisation. (4 marks)

Question 12

Compute the accuracy of your forecasts generated from the three model in a table. Which model does best and why? (50 words). (3 marks)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图