代做EMATM0067 Text Analytics Coursework Spring 2025代做留学生Python程序

EMATM0067

Text Analytics Coursework

Spring 2025

Deadline: 13.00 on Monday 28th April

Overview

This coursework is worth 50% of the unit. It wiII take you through severaI text anaIytics tasks to give you experience with appIying and anaIysing the techniques taught during the Iabs and Iectures. The work wiII be assessed through both your code and your written report, in which you shouId aim to demonstrate your understanding of text anaIytics methods, evaIuate the methods criticaIIy and incorporate ideas from the Iectures.

We recommend that you first get a basic impIementation for aII parts of the required assignment, then start writing your report with some resuIts for aII tasks. You can then graduaIIy improve your impIementation and resuIts.

TotaI time required: 40 hours.

Support

The Iecturers and teaching assistants are avaiIabIe to provide cIarifications about what you are required to do for any part of the coursework. You can ask questions during our Iab sessions, post questions on MS Teams, or to the BIackboard discussion forum. If you don’t want to share your

question with the cIass, pIease contact Edwin by emaiI ([email protected]).

Part 1: Climate Sentiment – Jupyter Notebook (max 32%)

Many companies are required to pubIish (corporate discIosures’一 documents containing usefuI information about the business and its finances. The information in these discIosures is very usefuI for investors, reguIators and other stakehoIders. For exampIe, discIosures may present cIimate-reIated deveIopments as risks or opportunities for the business. In this part of the assignment, you wiII compare cIassifiers that cIassify the sentiment of a text as a cIimate risk, an opportunity, or neutraI. We wiII be working with the CIimateBERT dataset:Webersinke et aI., 2022.

Part 1 contains tasks 1.1 (13 marks), 1.2 (8 marks), and 1.3 (11 marks). Please see the accompanying Jupyter notebook text_analytics_part1.ipynb for detaiIs, which contains a series of tasks for you to compIete. Your answers to tasks 1.1, 1.2 and 1.3 shouId be saved in the notebook   itseIf, which you wiII need to submit. Submission detaiIs are in the notebook.

Task 2: Climate Sentiment – Report (max. 38%)

2.1. Present an evaIuation of the three methods impIemented in Part 1. Your evaIuation shouId be presented as the first page of your report. Your evaIuation shouId incIude the foIIowing points:

•     ExpIain the modifications you made to the naïve Bayes cIassifier in task 1.1c: what did you change, how does it heIp the cIassifier, and was there anything you tried that didn’t work? (3%, max. 150 words)

•     Present a comparison of results in a table or plot, along with your interpretation of how well each method worked. Your discussion should mention concepts from the lectures (e.g., transfer learning) and what could be improved in future work. To inform. this discussion, you may want to analyse some examples of misclassified texts. (10%).

2.2. Using the dataset, can you identify topics that are associated with climate-related risks or opportunities?

•     Explain the method you use to identify themes or topics. Make sure to motivate why you chose this approach and discuss its limitations.

•     It is important to test and compare different approaches to find out what works best for this dataset. Compare two variations of your method, e.g., by changing an important step or parameter.

•     Show your results (e.g., by listing or visualising topics associated with risks or opportunities).

Interpret the results and summarise the limitations of your approach.    (25%)

Suggested length of report for task 2: 2.5 – 3 pages.

Task 2: Named Entity Recognition on Twitter (max. 30%)

Social media contains a wealth of information about public opinion and events, but this is often contained in unstructured text data. Your task is to build a tool for named entity recognition from Twitter posts that can help extract information about particular people, organisations and locations. To train and test the NER tagger, we will use the Broad Twitter Corpus (BTC) dataset, published by Derczynski et al., 2016.You can also find useful information on theHuggingFace dataset page.

2.1. Design and run a sequence tagger for the BTC dataset. Refer to the labs, lecture materials and textbook to identify a suitable method. You may choose any sequence tagging method you think is suitable, and you may wish to experiment with some variations in the choice of features or model  architecture to help justify your design. In your report:

Briefly explain your chosen method and its main strengths and limitations.

•     If your model uses its own tokenizer, explain how you align the tokens with tags (this step is only needed if you use a neural sequence tagger that requires a particular tokenizer).

•     Show an example entity span from the dataset, that illustrates how entity spans are encoded as tags in this dataset.

•     Detail the features you have chosen, why you chose them, and hypothesise how your choice will affect your results.

Higher marks are given for good, well-justified model design.    (17 marks)

2.2. Evaluate your method, then interpret and discuss your results. Include the following points:

Explain your choice of performance metrics and their limitations.

Describe the testing procedure (e.g., how you used each split of the dataset).

•     Show your results using suitable plots and/or tables.

•     Do your methods make any particular kinds of error? Show some examples of mislabelled sentences and suggest how the methods could be improved in future.   (13 marks)

Suggested length of report for task 2: 2 pages.

Implementation

The lab notebooks provide useful example Python code, which you may reuse. You may libraries introduced in the labs, or others of your choice. For tasks 2 and 3, you may write your code in either Jupyter notebooks or standard Python files.

Report Formatting

Absolute maximum 5 pages

o   References do not count toward the page limit.

o  Aim for quality rather than quantity: you will receive higher marks if you write concisely.

•     To set the page layout, fonts, margins, etc., we recommend using the template from an academic conference, such as LREC-COLING 2024 if writing the report in Latex

o  You can use this template directly to write in Latex or follow the formatting style. in Word, Libreoffice, etc.

o   You don’t need to include an abstract or introduction or conclusion.

o   Please number your answers to each task clearly so that we can find them.

o   No less than 11pt font

o  Single line spacing

o  A4 page format

The text in your figures must be big enough to read without zooming in.

Citations and References

Make sure to cite a relevant source when you introduce a method or discuss results from previous work. You can use the citation style. given in the LREC-COLING 2024 style. guide above. The details of  the cited papers must be given at the end in the references section (no page limits on the references list). Please only include papers that you discuss in the main body of the report.

Google Scholar and similar tools are useful for finding relevant papers. The‘cite’link provides bibtex code for use with latex and references that you can copy, but beware that this often contains errors.

Submission

•     Deadline for report + code: please see first page.

•     On Blackboard under the“assessment, submission and feedback”link.

Please upload the following three files:

1.   Your submission for task 1: please see the details in the Jupyter notebook. It should be submitted to the submission point“Text Analytics Part 1 Notebook”.

2.   Your report for tasks 2 and 3 as a PDF with filename .pdf, where

”is repIaced by your student number from eVision (starting with a (2’, not your username).

o   UpIoad this to the submission point marked“Turnitin submission point - Text AnaIytics Coursework”.

o Please don’t include your name in the report itself: to ensure fairness, we mark the reports anonymousIy.

3.   Your code for tasks 2 and 3 a single zip file with filename .zip.

o   Inside the zip fiIe there shouId be a singIe foIder containing your code, with your student number as the foIder name.

o   PIease remove datasets and other Iarge fiIes to minimise the upIoad size.

o   UpIoad this fiIe to the submission point“Text AnaIytics Parts 2 & 3 Code”.

o   For tasks 2 and 3, your marks wiII be based on the contents of your report, rather than for good code structure or styIe. Assessment Criteria

To gain high marks, your report wiII need to demonstrate a thorough understanding of the tasks and the methods used, backed up by a cIear expIanation of your resuIts and anaIysis or errors. Marks wiII be awarded for appropriateIy incIuding concepts and techniques from the Iectures.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图