代写Assignment ST3074 AY2024-2025 Semester 2代做R语言

Assignment ST3074

AY2024-2025 Semester 2

Instructions:

100 marks are available.

Please answer both questions, each worth 50 marks.

Suggested time is 2 hours.

You must upload a completed report (word file/pdf), copying and

pasting supporting calculations/output/code from Excel and R into the spaces provided.

You should also upload any accompanying excel files and R scripts with your report to Canvas.

Each uploaded file should be named with your name and student number, e.g.

Forename_Surname_123456789_Report

Forename_Surname_123456789_Q1 Excel

Forename_Surname_123456789_Q2 R”

This is an open book assignment. You are permitted the use of any notes, Canvas materials and the R help function.

Q1.

You are a trainee reserving actuary at XYZ Ltd, an established Irish insurance company. You are currently managing two Lines of Business (LoBs):

Employers' Liability Insurance (LoB X): A well-established LoB with multiple years of claims data.

Medical Malpractice Liability Insurance (LoB Y): A newer LoB with limited historical data.

Claims for both lines are subject to inflation, and you have been provided with  historical inflation values as per the CPI Index. Your task is to estimate the required reserves as of year- end  2024, considering both lines of business. The necessary data are provided in  the accompanying excel file.

(a)  Describe at least two examples (for each line of business) of events that could lead to claims for Employer’s Liability and Medical Malpractice.

(b) You are provided with the incremental and cumulative incurred claims triangles for LoB X in the accompanying excel file. Calculate the Basic Chain Ladder Estimate of the reserves required for LoB X. Note any assumptions required.

Cumulative Claims

Development Year

Accident Year

0

1

2

3

2021

1637

2292

2784

3200

2022

1400

2060

2570

2023

1200

1820

2024

1125


Incremental

Claims

Development Year

Accident Year

0

1

2

3

2021

1637

655

492

416

2022

1400

660

510

2023

1200

620

2024

1125

(c)  You are provided with historical inflation data in the accompanying excel file. Research and  apply the Inflation-Adjusted Chain Ladder Method to estimate the required reserve.  Note any assumptions required.  Comment on  the impact of using the Inflation-Adjusted Chain Ladder Method versus the Chain Ladder Method to estimate the reserve.

(d)  LoB Y is a new line of business with limited historical data (€2,000 of incurred claims in the current year). In order to establish a reserve, it should be assumed that the development pattern for LoB Y can be derived from   LoB X with appropriate adjustments. In an effort to modernise the company, XYZ has laid off its underwriting staff and replaced them with  an AI chatbot, arguing that the AI model has been appropriately trained on company data and can emulate a discussion with an underwriting expert accurately. Engage in a conversation with an AI chatbot (Chat GPT or similar) to determine reasonable assumptions for reserving LoB Y, including:

•   The claims development assumptions.

•    Inflation assumptions.

•   Other relevant actuarial assumptions.

Copy and paste below your conversation history with the AI chatbot. Without further discussion with the chatbot, provide a critical assessment of the chatbot’s responses.

(e)  Based on your discussion in (d), document your assumptions and construct a reserve model in Excel for LoB Y. This model should apply the Inflation-Adjusted Chain Ladder Method to project the claims development for LoB Y to Ultimate and estimate the required reserves.

(f)  The Chief Actuary has become concerned that the excel reserving model takes a long time to update. She has asked you to develop a model in R to implement the Inflation- Adjusted Chain Ladder Method for LoB X. Create an implementation that replicates your answer for part (c) above, pasting your code and output below.

(g)  The Chief Actuary has further commented that the current model is limited in that it only provides a point estimate for the reserves and gives no indication as to their potential variability.  Extend your model from (e) to bootstrap the future inflation assumption from the historical inflation data to generate a  distribution of 50,000 reserve estimates. Report below:

•   The best estimate (mean of the bootstrap distribution).

•   The 99.5th percentile reserve estimate.

•   An appropriate visualisation of the reserve distribution to illustrate the reserve variability by varying the inflation assumption.

•   Comment on your results, using your actuarial judgement to suggest (with justification) the level at which the reserves should be set for LoB X.

Note:  to ensure reproducibility of the bootstrap reserves, the regulator requires that the R model uses the set.seed(100) command.

Q2.

You have joined a startup company which plans to sell Property Damage and Business Interruption Insurance Policies. The regulator has provided you with a dataset of 1,000 annual aggregate claims  (Gross of any reinsurance arrangement) expressed  in  2024 terms in the accompanying excel file Property_BI_Claims.csv.

(a)  Read the data into R, generate appropriate visualisations and comment on the features of the data.

(b) Your task is to parameterise a suitable model to assess the solvency of the business in

2025. The company’s reinsurance programme is as follows:

•   The Property Damage LoB is reinsured via a Quota Share (QS) arrangement where 40% of each claim is transferred to the reinsurer.

•   The Business Interruption LoB is reinsured via an individual Excess of Loss (XoL) arrangement with retention of 10,000.

The insurer’s profit may be modelled as:

profit = Initial capital + premiums — Net claims — Expenses

•   Assume the initial Capital is €150,000 and the annual aggregate  premium intake is €70,000.

•   Assume fixed expenses of €10,000 and that claims handling expenses are 5% of claims gross of reinsurance.

•   Select (giving your rationale) a suitable model for the claims portfolio and use the regulator’s data to estimate its   parameters.  Hence create 50,000 simulations of the insurer’s profit.

•   Assess the probability that the insurer will be solvent (have a profit greater than zero).

(c)  The  regulator  has  asked for you to  provide sensitivity analysis to demonstrate the robustness of the company’s solvency.

•    Produce a plot to illustrate the change in probability of solvency for a range of values of initial capital.

•    How much capital would be required to ensure a 99.5% probability  of solvency?

(d) Assess (with supporting statistical tests, calculations and output) the goodness of fit of your chosen claims model, commenting on your answer.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图