代写ECON3106 Politics and Economics Exercises 1代做留学生Matlab程序

ECON3106 Politics and Economics

Exercises 1

1 .

Definition 1. A preference ranking > over a set of alternatives A is transitive if, for any three alternatives, A, B, C ∈ A, if A > B and B > C , then A > C.

There is a society with 3 individuals:  i, j, k (Irma, Jakie and Kelly).  Their preferences are represented as:

Irma: A >i  B >i  C

Jakie: B >j  A >j  C

Kelly: C >k  B >k  A

Irma proposes a system where each individual associates 3 points to his or her favourite alternative,  2 to the second  and  1 to the third.   The  sum  of each individual points will constitute the social ranking.

1.1 Show the social ranking resulting from Irmas method.

1.2    Show that Irma’s method always gives a transitive so- cial ranking (hint: notice that in the natural numbers, i.e. 1; 2; 3; . . . , greater than is transitive)

2 .

There is a society with 3 individuals: i, j, k (Irma, Jakie, Kelly, Louise). Their preferences are represented as:

Irma: A >i  C >i  B

Jakie: B >j  A >j  C

Kelly: B >k  C >k  A

Louise: A >l  C >l  B

2.1    Find the set of Pareto efficient alternatives

The  society  needs  to  choose  one  of  the  three  alternatives.    As  Louise  and Kelly are the youngest ones, the society wishes to give their preferences extra- consideration. Consider the following social choice method:

Round 1—select between B and C: each individual “votes” for the alter- native she prefers the most between the two.  The alternative with most votes is selected for Round 2.  In case of a tie, Louise’s preferences will determine the selected alternative.

Round 2—choose between selected alternative and A: each individual“votes” for the alternative she prefers the most between the two. The alternative with most votes is chosen. In case of a tie, Kelly’s preferences will deter- mine the selected alternative.

2.2    Which alternative would be chosen if the society was to use this method?

Now consider the following social choice method:

Round 1—select 2 alternatives: each individual “votes” for the alternative she prefers the most between the three.  If an alternative gets the most votes, then it is chosen.  Otherwise, the two top alternatives are selected for Round 2.

Round 2—choose between the 2 selected alternatives: each individual“votes” for the alternative she prefers the most between the two. The alternative with most votes is chosen.  In case of a tie, Louise’s preferences will deter- mine the selected alternative.

2.3    Which alternative would be chosen if the society was to use this method?

3 Condorcet Method (Open Agenda)

A society is composed of 3 individuals named 2, 6, and 10.  There are three alternatives, whether to have one, three, or five parties.  We label these three alternatives, respectively, 1, 3, and 5.  For any individual i (where i is a name like 2, etc), her utility if alternative A is chosen is given by

ui (A) = - (i - 2A)2 .

For example, if the alternative chosen is A = 5, individual i = 6 receives utility equal to

u6 (5)   =    - (6 - 2 × 5)2

            =    - (6 - 10)2

=    -16.

3.1    What is the most favourite alternative for each indi- vidual?

For the remaining of this exercise, assume voters vote sincerely.  I also invite you to think about whether sincere voting would be a Nash equilibrium of the voting game.

3.2    Consider a majority vote between alternatives 1 and

3. Which alternative would win?

3.3    Consider a majority vote between alternatives 3 and

5. Which alternative would win?

3.4    What can we conclude about the alternative 3?

4 Arrows Impossibility Theorem

A friend of yours proposes a system to choose between different alternatives and proves to you that this is not a dictatorship.  Using Arrow’s impossibility theorem, what must you conclude?

5    Strategic Voting in Plurality Elections

There is a plurality election with three candidates, {X, Y, Z}. You are a voter with preferences X > Y > Z. You read in an accurate poll that there are three types of voters:

1.  circa 49% will surely vote for Z;

2.  circa 48% will surely vote for Y ;

3.  circa 3% have the same preferences you have, but have not yet decided for whom to vote.

5.1 What is a plurality election?

5.2 If all voters like you (group 3) vote sincerely, which candidate would you expect to win?

5.3 If all voters like you (group 3) vote strategically, which candidate would you expect to win?

6 Strategic Voting and the Swing Voters Curse

Assume that you are a member of a jury voting by simple majority rule between two alternatives: A or B.  In case of a tie, the jury will toss a fair coin to choose between the alternatives.  There are other 99 jurors.  You have been told the following: if A is the correct alternative, then 50 of the other voters will vote for A and 49 will vote for B ; If B is correct, then 50 of the remaining voters vote for B and 49 vote for A.  That is, in each possible state, a majority of 50vs49 voters are guessing correctly. This means that you are the so called swing voter and the result of the ballot depends on you.  You think that  A is the correct alternative with probability 80%.

6.1 If you vote for A and your vote is pivotal (i.e. deci- sive), which alternative must be the correct one?

6.2 Is voting A a good idea for you?

6.3 If you vote for B and your vote is pivotal (i.e. deci- sive), which alternative must be the correct one?

6.4 Is voting for B a good idea for you?

6.5    If you were given the alternative between voting A, B , or abstaining, what would you prefer to do?

If you have answered correctly, then you have shown an example of a result known as the swing voter’s curse. Congratulations!

7    "Majority voting aggregates information dis-persed among the voters." Comment in no more than two paragraphs. Make sure to refer clearly to major results in voting theory.

8 .

There is a society with 71 individuals.  Each individual’s name is a (natural) number between 1 and 71.  Call i the name  (number) of each individual.  Her preferences are given by the utility function

ui  = - jA - ij

where A is an alternative and  jxj  is the  absolute value of x.   The set of the alternatives is A {1, 40, 81}.

8.1 For any individual i ∈ {1; . . . ; 71}, nd her bliss point.

(Hint: if you make a list of 71 bliss points, you are not being very efficient).

8.2 Are the preferences of these individuals single-peaked?

You might notice that there is more than one median voter.

8.3 What is their bliss point?

8.4 Suppose that the bliss point of the median voter(s) is put to vote against another alternative of your choice. What would be the result of the vote?   (How many votes for each alternative?)

8.5    According to the median voter theorem, what is the unique equilibrium outcome of an open agenda method in this society?

9 .

There is a society with three voters, I = {a, b, c}.  Voters have preferences over three possible alternatives {0, 1, 3} as follows:

0 >a  1 >a  3;

1 >b  0 >b  3;

3 >c  1 >c  0.

9.1 Do the voters exhibit single-peaked preferences?  (Pro- vide a justification for your answer)

9.2 Is there a Condorcet winner in this society? If so, which theorem guarantees its existence and why?

9.3    Which alternative is the Condorcet winner, and why? 10 .

In an election there are two candidates, L and R.  Both candidates only care about winning the election, i.e. they are office-motivated.  There is a continuum of voters of total mass 1.  A generic voter has name i.  A fraction γ ∈ (1/2, 1) of the voters have income yi   = yl.  The remaining fraction  (1 — γ) of voters have income yi  = yh  > yl.  The set of possible alternatives is all the tax rates

τ between 0 and 1.  The tax is purely redistributive:  if y- is the mean income, consumption for voter i is equal to

ci  = yi + τ (y- - yi ) .

Each voter wants to maximize her own consumption.

Before the election, candidates L and R choose platforms τL and τR , respec- tively. That is, each chooses a tax rate.  Each voter then observes the platforms and votes for the candidate whose platform she prefers.

10.1 Express the mean income as a function of the income of the two groups?

10.2 What is the median income? How does it compare with the mean income?

10.3    What is the tax rate most preferred by a voter with income yl?

10.4 Use the theorems seen in class to predict the plat- forms of the two candidates and the policy that will be implemented by this society.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图