代写EMET 4314/8014 Advanced Econometrics I 2022调试数据库编程

Advanced Econometrics I

(EMET 4314/8014)

First Semester Final ExaminationJune, 2022

Beginning of Exam Questions

1.  [1 mark total] Write the following statement by hand:

I hereby declare

to uphold the principles of academic integrity, as defined in the University Academic Misconduct Rules;

that your work in the final exam in no part involves copying, cheating, collusion, fabrication, plagiarism or recycling.

2.  [20 marks total]

Consider the scalar model Yi  = β0+ β 1Xi1+ ei where ei|Xi1  ~ N(0,1).

You have available a random sample (Xi1, Yi), i = 1, . . . , N.

Let β0and β 1be the OLS estimators obtained from a regression of Yi on a constant and Xi1 .

(a)  [2 marks] State β 1 in terms of sample moments ofthe data (that is, sample

means, variances, and covariances). No derivation, just state the result.

(b)  [2 marks] Derive Var (β 1|Xi1).

You observe an additional variable, Xi2 . Denote by 0 and 1 the OLS estimators from a regression of Xi1 on a constant and Xi2 . Define X-i1  := π-0+ π-1Xi2 .

Let θ0and θ 1be the OLS estimators obtained from a regression of Yi on a constant and Xi1 .

(c)  [4 marks] Derive θ 1 in terms of sample moments of the data.

(d)  [2 marks] Derive Var (θ 1|Xi1, Xi2).

(e)  [5 marks] Prove or disprove: θ = β 1+ op (1).

(f)  [5 marks] Which estimator do you prefer: β 1 or θ 1? Why?

3.  [20 marks total - 5 marks each]

Are the following statements true or false? Provide a complete explanation. Use mathematical derivations where necessary.

(Note: you will not receive any credit without providing a correct explanation.)

(a)  Let the discrete random variable have the following distribution:

P(Y = 1) = π1,         P(Y = 2) = π2,         P(Y = 3) = π3,

where π1  ∈ (0,1), π2  ∈ (0,1), π3  ∈ (0,1), and π1 + π2 + π3  = 1.

In a random sample of size N you observe N1 realizations for which Y = 1, N2  realizations for which Y  = 2, N3  realizations for which Y  = 3, so that N1 + N2+ N3  = N.

Then the maximum likelihood estimate of π1 is N1/N.

(b)  Let X be a Bernoulli random variable, that is, X = 1 with probability π and X  = 0 with probability 1 — π where π ∈ (0,1).  Let Y be another random variable (not Bernoulli distributed) and assume that Cov(X, Y) ≠ 0.

Then Cov(X, XY) = E(Y) + (1 — π) · Cov(X, Y).

(c)  Let the random variable Z be such that E(Z) = 3 and E(Z2 ) = 13.  Then a lower bound for P(—2 < Z < 8) is given by 21/25.

(d) The Monte Carlo simulation of the simple schooling model from week 7, as summarized by the Julia code and corresponding output below, illustrates that the OLS estimator is a consistent estimator for the return to schooling.

JULIA CODE

1              using Distributions , Random, Plots

2

3 function schooling__sample (b2 , n ;

4                                             p=13.2 , b1 =4.7 , b3=0,

5                                             su =0.175 , sa =7.2)

6                       u = rand (Normal (0 ,  s q rt (su ) ) , n)

7                        a = rand (Normal (0 , s q rt ( sa ) ) , n)

8                      S = p .+ a

9                        Y = b1 .+ b2∗S .+ b3∗a .+ u

10                       return S , Y

11 end

12

13              rep = 100000

14              b2 = Array{ Floa t 6 4 } (undef , rep )

15 for r in 1 : rep

16                     n = 1000

17                        x , y = schooling__sample (0 .075 , n)

18                      b1_tmp , b2_tmp= [ones (n , 1) x ]\y

19                        b2 [ r ] = b2_tmp

20 end

21            histogram (b2 , normed = false )

OUTPUT

4.  [20 marks total] Consider the model

Yi  = µ(Xi, θ) + ei,        where ei|Xi  ~ N(0, σ2e).

The variables Yi  and ei  are scalars and dim(Xi)  =  K × 1 and dim(θ)  =  L × 1 where K L. The functional form. of µ is considered known but is left unspecified here.

You have available a random sample (Xi, Yi), i  =  1, . . . , N, to estimate the un- known parameters θ and the scalar σ2e.

(a)  [3 marks] Derive the conditional log likelihood function L(θ, σ2e).

(b)  [3 marks] Derive the score function.

(c)  [3 marks] Derive the expected value of the score conditional on Xi.

(d)  [2 marks] Determine the MLE of σ2e as a function of θ ML  (the MLE of θ).

(e)  [3 marks] Derive the Hessian matrix as the derivative of the score.

(f)  [6 marks] Show that the information equality holds here.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图