代做MATH2110、Java/Python程序语言代写
1 MATH2110
The University of Nottingham
SCHOOL OF MATHEMATICAL SCIENCES
SPRING SEMESTER 2025
MATH2110 - STATISTICS 3
Coursework 2
Deadline: 3pm, Friday 2/5/2025
Your neat, clearly-legible solutions should be submitted electronically as a pdf file via the MATH2110 Moodle
page by the deadline indicated there. As this work is assessed, your submission must be entirely your own
work (see the University’s policy on Academic Misconduct).
Submissions up to five working days late will be subject to a penalty of 5% of the maximum mark per working
day.
Deadline extensions due to Support Plans and Extenuating Circumstances can be requested according to
School and University policies, as applicable to this module. Because of these policies, solutions (where
appropriate) and feedback cannot normally be released earlier than 10 working days after the main cohort
submission deadline.
The page limit is 8 pages and the minimum font size is 11.
THE DATA
As a medical statistician of the 19th century, your task is to assess associations between the fertility of different
Swiss regions and certain social parameters. The goal is to identify the most influential variables, select the
best model, and make predictions using it. You have data for 47 regions with the following variables:
• Fertility, standardised fertility measure.
• Agriculture, percentage of males involved in agriculture as occupation
• Examination, percentage draftees receiving highest mark on army examination
• Education, percentage education beyond primary school for draftees.
• Catholic, percentage of catholic.
• Infant.Mortality, normalised proportion of live births who live less than 1 year.
You can load the data by running the 𝑅 command data(swiss). The only packages that may be used are
“BayesFactor” and “MASS”.
MATH2110 Turn Over
2 MATH2110
THE TASKS
First divide the data into a training set (70% - 33 observations) and a test set (30% - 14 observations). All the
fitting and selection should be done using exclusively the train set. To avoid having correlations during the
train/test division, use the function sample() to randomly choose both groups.
All modelling should be using Bayesian Normal linear models and use priors:
𝛽|𝜎2 ∼ 𝑁 (0, 100Ip
)
𝜎
2 ∼ 𝐼𝐺(2, 2),
where Ip
is the 𝑝 × 𝑝 identity matrix and 𝐼𝐺 denotes the inverse-gamma distribution.
1. Consider the relationship between Examination and Fertility.
• Perform an exploratory analysis of the relationship between Examination and Fertility.
• Fit a Bayesian Normal linear model with Fertility as the dependent variable and Examination as the
independent variable.
• Write down the selected model posterior.
• Sample 10 sets of parameters from the posterior distribution and plot the resulting linear model for
each set of sampled parameters.
[20 marks]
2. Consider the relationship between Catholic and Fertility.
• Perform an exploratory analysis of the relationship between Catholic and Fertility.
• Create a new variable Catholic.Transform = (Catholic − 𝛼)2
for a suitable choice of 0 ≤ 𝛼 ≤ 100.
• Fit a Bayesian Normal linear model with Fertility as the dependent variable and Catholic.Transform
as the independent variable.
• Write down the selected model posterior.
• Using the posterior mean for the parameters of the linear model consider the model fit.
[25 marks]
3. Use Bayes Factors to determine which of the models in 1 and 2 best fits the data. [5 marks]
4. Consider general linear models for modelling Fertility as a function of the covariates.
• Perform model selection to choose a model and justify your choice of model.
• Write down the selected model posterior.
• Draw samples from the corresponding posterior.
• Present histograms (using function hist()) for the samples of each parameter.
• Compute estimates of the parameters and compare them.
• Make predictions for the Fertility values in the test set.
• Compare these with the real values.
[50 marks]
MATH2110 End

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图