代写DTS208TC Data Analytics and Visualisation Coursework 2代做Python编程

Module code and Title

DTS208TC Data Analytics and Visualisation

School Title

School of AI and Advanced Computing

Assignment Title

Coursework 2

Submission Deadline

03/Apr/2025

Final Word Count

N/A

DTS208TC Data Analytics and Visualisation

Coursework 2

Submission deadline: 11:59pm, 03/Apr/2025

Percentage in final mark: 50%

Learning outcomes assessed: C. Select appropriate data analysis and visualisation methods to highlight particular features for a given data type and a set of analysis objectives or user requirements.

Late policy: 5% of the total marks available for the assessment shall be deducted from the assessment mark for each working day after the submission date, up to a maximum of five working days

Risks:

•    Please read the coursework instructions and requirements carefully. Not following these instructions and requirements may result in loss of marks.

•    Plagiarism results in award of ZERO mark.

•    The formal procedure for submitting coursework at XJTLU is strictly followed. Submission link on

Learning Mall will be provided in due course. The submission timestamp on Learning Mall will be used to check late submission.

•    Academic Integrity Policy is strictly followed.

Overview

In this individual coursework, you will use python to analyse air quality data from the United States across multiple years and states, focusing specifically on California. The dataset includes various air quality metrics, population estimates, and yearly statistics from 2000 to 2022. Your task is to explore trends, identify patterns, and predict California’s Median AQI for 2022 using both data visualization and machine learning. Additionally, you will analyse and compare the predictions from these two methods.

Dataset

The datasetAQI By State 2000-2022 contains the following columns:

Geo_Loc - Geographic location identifier.

Year - The year of the observation.

State - The name of the U.S. state.

Pop_Est - Estimated population for the year and state.

Dys_Blw_Thr - Number of days with air quality below a specific threshold.

Dys_Abv_Thr - Number of days with air quality above a specific threshold.

Good Days - Number of days classified as Good” air quality.

Moderate Days - Number of days classified as Moderate” air quality.

Unhealthy for Sensitive Groups Days - Number of days classified as Unhealthy for sensitive groups” air quality.

Unhealthy Days - Number of days classified as “Unhealthy” air quality.

Very Unhealthy Days - Number of days classified as “Very Unhealthy” air quality.

Hazardous Days - Number of days categorized as Hazardous.”

Max AQI - Maximum Air Quality Index recorded in a year.

Median AQI - Median Air Quality Index recorded in a year.

Submission and Requirements

You are required to submit the following files as part of their coursework:

1.      Task-Specific Python Files:

•       Each task must be implemented in a separate Python script file.

•       Name the files should be task1.py and task2.py

•       Your code needs to include appropriate comments and be well-documented.

2. Report:

•       Complete the provided CW2_Report.docx

•       Please include all source code and results in the report.

•       Ensure that any non-obvious parts of your implementation are explained clearly in the report.

•       The report should be submitted in .pdf format.

3.      Other

•       The original dataset

Tasks

Given the dataset, you are expected to complete the following tasks using the Python programming language. You are allowed to use existing Python libraries to solve the tasks.

T1. Nationwide Visualisation of Air Quality (45 marks)

Explore how air quality has changed across the U.S. over time and analyse its geographic distribution, focusing on patterns and regional differences. Based on the given requirements, you need to select the most appropriate visualization designs (e.g., marks, channels, etc.).

T1-1: Create a visualization showing the trends of Max AQI for all states from 2000 to 2022.

T1-2: Create a visualization showing the distribution of Max AQI by different states for year 2022.

T1-3: Create a visualization showing the distribution of air quality days (Good Days, Moderate Days,

Unhealthy Days, Very Unhealthy Days and Hazardous Days) in California for the year 2000.

T1-4: Describe the design ofT1-1, T1-2 and T1-3. Please fill in the required information in the report.

T2. Predictive Analysis for California (55 marks)

Focus on California’s air quality data to predict its Median AQI for 2022 using two approaches: visual analysis and model-based prediction.

T2-1: Create 5 data visualisation results to show the relationships between California’s Median AQI and its influencing factors (Year (2000 - 2021), Pop_Est, Good Days, Moderate Days, Unhealthy Days) with suitable designs.

T2-2: Based on the visualisation results, describe the relationship between these influencing factors and the Median AQI. Using these relationships and the 2022 influencing factors data for California, predict the Median AQI for California in 2022 without relying on model training. Justify the reason of your prediction.

T2-3: Train a regression model using California’s data from 2000 to 2021. The model should aim to learn the relationships between Median AQI (target variable) and its influencing factors (Year (2000 - 2021), Pop_Est, Good Days, Moderate Days, Unhealthy Days). Choose 2 evaluation metrics to evaluate your model and discuss the performance.

T2-4: Using the trained model and the corresponding factors data from California in the 2022, predict the 2022 Median AQI value for California.

T2-5: Compare the results of the visual prediction from T2-2, the model-based prediction from T2-4, and the ground truth in the dataset. Discuss the differences and explain which approach you find more reliable and why.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图