代写MATH3076,3976,4076: Mathematical Computing Semester 1, 2025 Assignment 1调试Python程序

MATH3076,3976,4076: Mathematical Computing

Semester 1, 2025

Assignment 1

Problem setting

The Lennard-Jones potential provides a phenomenological description for the interaction between molecules. In standardized units, the potential energy V as a function of the distance r is written as

Consider a particle with total energy E moving under the influence ofthe Lennard-Jones potential.

The Kinetic energy K (r) = E − V (r) of the particle as a function of the position r can thus be written as

Mathematically, and throughout this assignment, we consider K (r) defined for allr > 0. Physically, K (r) can be interpreted as the kinetic energy only when K (r)  ≥ 0 (because the kinetic energy is proportional to the square of the velocity).  We are interest in the minimum distance of the particle, obtained, for instance, when the particle heading towards collision stops.  We denote this minimum distance as r* .  This corresponds to the smallest root of K (r), i.e., r* is the smallest value of r for which

K (r) = 0.

Questions

1. Characterization of the problem (3 marks).

(a)  Write a code in Python that numerically plots the function K (r) as a function of r for E = −0. 1. The region around K (r) = 0 should be clearly visible.

(b)   Based on the plot produced in the previous item, how many different solutions of K (r) = 0 exist for E = −0. 1?

(c)   Calculate the number of different solutions of K (r) = 0 as a function of E  ∈ R. Justify your answer analytically (i.e., not based on numerical computations).

2. Bisection method (7 marks).  We are intrested in computing r* using the bisection method initialized in the pair of points a, b with b > a.  You can write the answers to the questions below as a function of r* and other roots of K(r).

(a)   For E = −0. 1, specify one pair (a, b) for which the bi-section converges to r = r* as the number of iterations n → ∞. Justify your answer.

(b)   For all E  ∈ R, determine analytically all the possible regions of a, b  ∈ (0, ∞) × (a, ∞) for which the bisection method converges to r* or converges to a different root.

(c)   Write a code in Python that implements the bi-section method.  Use your code in the case E = −0. 1 to estimate r (precision of at least 6 digits). Choose also one initial pair (a, b) that does not converge to r*.

(d)   Using your code, compute the values ofK(rn) after n iterations of your bisection method for n ∈ [0, 100]. Do the values converge to zero? Explain why.

(e)   Modify your code to obtain a more precise estimation of r*, i.e., a value of r* such that K(r*) is closer to zero.

3. Newton-Raphson method (7 marks).  We are interested in computing r* using the Newton- Raphson method initialized in r0 .   You can write the  answers to the questions below as a function of r* and other roots of K(r).

(a)  Write the expression for the iterative procedure rn+1  = f (rn) obtained  applying the Newton-Raphson method to the problem of finding the roots of K(r), i.e., the solutions of K(r) = 0.

(b)   For E = -0. 1, consider the following three possible outcomes of the Newton-Raphson methods:

-   the method converges to r*.

-   the method converges to a root different from r*

-   the method does not converge or fail.

Indicate one intial condition r0  which leads to each of the possible outcomes that takes place in this problem. Justify your answer.

(c)   Let I(E) be the largest interval containing r* for which the Newton-Raphson method converges, i.e., r* ∈ I and for any r0  ∈ I we have rn  → r* as n  → ∞.  Compute I for E = -0. 1 and discuss what happens at the boundary of this interval.

(d)   Write a code which implements the Newton-Raphson method and apply it to the case E = -0. 1. Use your code to

(i)   estimate r* with a precision of at least 6 digits;

(ii)   test what happens for different values r0 , including r0  ∈ I and r0 ∉ I. Include values of r0 that illustrate all possible behaviours of the method (i.e., not only cases which converge to r*).

(e)   For E  = -0. 1,  are  there values r0   ∉ I(E) for which the Newton-Raphson method converges to r*?  Use your code to explore possible outcomes.  Explain your numerical observations.

(f)   For E  = +0. 1,  are  there  values r0   ∉ I(E) for  which  the Newton-Raphson method converges to r*?  Use your code to explore possible outcomes.  Explain your numerical observations.

4. Evaluate the AI answer (3 marks).  Below you find the answer of Microsoft Co-pilot (based on the large language model GPT-4) to the request to compute the roots of K (r) in the case E = 0. 1. The two user inputs (requests) appears in the text within the blue boxes on the right.

(a)   Which programming language has Copilot used to find the roots? Is the chosen library suitable for the requested problem?

(b)   For each of the two reported roots, indicate whether they are a good approximation (up to the reported precision) of an actual root of the problem.

(c)   Consider the six bullet points listed in the 3-point detailed explanation.  Identify the bullet points that are not correct (if any) and correct them.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图