代做CMT304 Programming Paradigms 2024–25帮做Python程序

Assessment Proforma 2024–25

Key Information

Module Code

CMT304

Module Title

Programming Paradigms

Assessment Title

Differentiable Programming

Assessment Number

Part 3 of the 4-part portfolio coursework

Assessment Weighting

25% of the portfolio coursework

Assessment Limits

Hand-out: 6th of February 2025

Hand-in: 10th of April 2025, 9:30am

Feedback expected by: 13th of May 2025

Limits are per task as set in the instructions

The Assessment Calendar can be found under ‘Assessment & Feedback’ in the COMSC–ORG– SCHOOL organisation on Learning Central. This is the single point of truth for (a) the hand out date and time, (b) the hand in date and time, and (c) the feedback return date for all assessments.

1    Learning Outcomes

The learning outcomes for this assessment are

•  Explain the conceptual foundations, evaluate and apply various programming paradigms, such as logic, functional, scripting, filter-based programming, pattern matching and quantum com- puting, to solve practical problems.

•  Discuss  and contrast the issues, features, design and concepts of a range of programming paradigms and languages to be able to select a suitable programming paradigm to solve a problem.

2 Submission Instructions

The coversheet can be found under ‘Assessment & Feedback’ in the COMSC–ORG–SCHOOL or- ganisation on Learning Central.

All files should be submitted via Learning Central. The submission page can be found under ‘As- sessment & Feedback’ in the CMT304 module on Learning Central. Your submission should consist of these files:

Description

Type

Name

Coversheet

Compulsory

One PDF ( . pdf) file

coversheet. pdf

Task 1

Compulsory

One Python (. py) source file

task1 . py

Task 2

Compulsory

One PDF ( . pdf) file

task2. pdf

If you are unable to submit your work due to technical difficulties, please submit your work via e- mail to [email protected] and notify the module leader (and ideally the setter, if different).

Any code will be tested on a Linux system equivalent to COMSC’s Linux lab machines and must run there.

3    Assessment Description

The attached measurements . csv file contains measurements obtained from the analog circuit below. It is a csv file where the first column contains the time and the second column the voltage measurement at x in the circuit (1, 000 datapoints from time 0 to 2π ; time in arbitrary units).

This circuit consists of analog computing components we used with LTSpice in the module (ic indicates a non-inverting integrator, + a summer, - an inverter and AB a multiplier).  The data in the csv file are noisy voltage measurements from this circuit.  Information about the values a, textttb, and x0 is not available.

This assignment is about analysing the data with differentiable programming techniques and some questions about the approach as given by the tasks below, aligned with the contents of part three of the module.  It is a simple example to demonstrate your understanding of the programming paradigms involved. There are of course other approaches one can use to analyse the data, but this is not asked for.

The example has been kept simple to avoid the need of high computational resources. This should be executable with reasonable CPU resources without GPU; you can of course use a GPU to solve

the task.

Task 1: Write a python program using differentiable programming techniques to approximate the measurement data in measurements. csv with a parameterised function fp  : R → R, t ↦→ x. You may use pytorch, tensorflow or jax for this (or maybe a combination of these pack- ages; using numpy and matplotlib for supporting functionality is fine – any other packages are not needed; check with the coursework setter if in doubt). You are free to choose any function type (some analytical function, a neural network, etc), but you may want to consider the circuit diagram to choose a suitable function and its parameterisation. Your code can produce the results in any suitable format, on the terminal or in files (do not submit these). Submit a single python file solving this task.  Assume measurements . csv is in the directory the python file is executed from.

Task 2: Justify the function and the parameterisation you have used to match the data and explain what you can learn from this about the circuit given your results from the previous task. Or, if you cannot conclude anything, explain why not. Write a short report about this of up to 400 words (this is an upper limit, not a target).

4 Assessment Criteria

Task 1 worth 25% of the coursework

High Distinction

80% - 100%

Code is valid without syntax errors.  An efficient attempt to approximate the measurements using differentiable programming has been made. It pro- vides and excellent approximation of the measurement data which clearly provides insights into the operation of the circuit.  The attempt has been well documented clearly stating the idea to solve the problem and how it has been implemented and performance optimised.

Distinction

70% - 79%

Code is valid without syntax errors. A suitable attempt to approximate the measurements using differentiable programming has been made. It pro- vides and excellent approximation of the measurement data which helps to understand the operation of the circuit.  The attempt has been well docu- mented clearly stating the idea to solve the problem and how it has been implemented.

Merit

60% - 69%

Code is valid without syntax errors. A suitable attempt to approximate the measurements using differentiable programming has been made. It pro- vides a reasonable approximation of the measurement data, but the results do not help much to understand the circuit. The attempt has been well documented, stating the idea to solve the problem and how it has been im- plemented.

Pass

50% - 59%

Code is valid without syntax errors. A suitable attempt to approximate the measurements using differentiable programming has been made, but it does not work for the measurement data provided. The attempt has been reason- ably documented.

Marginal Fail

40% - 49%

Code is valid without syntax errors, but is not capable of approximating the measurements with differentiable programming. An attempt to document the code has been made.

Fail

0% - 39%

Code does not run or is not suitable to approximate the measurements with differentiable programming. There is little to no relevant documentation.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图