代写Lab 1 – INT 302: Image Processing代写Matlab语言

Lab 1 – INT 302: Image Processing

Start Date: 2025-03-11      Deadline: 2025-03-25

15% of the final marks

Late Submission Policy: 5% of the total marks available for the assessment shall be deducted from the assessment mark for each working day after the submission date, up to a maximum of five working days.

Objectives:

1-    Introducing the image processing capabilities of Matlab and its Image Processing Toolbox.

2-    Learn to read and display different images.

3-    Learn basic image processing steps.

4-    Master different image enhancement techniques

Download:

Download the files of Lab1_material.zip from the Learning Mall, unzip the file into a folder Lab1_material, which contains “lenna512color.bmp”and “lenna512.bmp”.

Tasks:

1. Task1 (15 marks)

Download image “lenna512color.bmp” . Use the functions imread to load the image into  Matlab, and conduct the following questions, please specify the intermediate process of how you conduct the questions:

(1)  Display  the  image  and  decouple  the  image  into  RGB  components.  Write  the transformation code by yourself. Please plot both original image and the decoupled components. Please describe your observation about the plotted images. (5’)

(2) Change the color space into CMY and show the images of CMY components. Write the  transformation  code  by  yourself.  Please  plot  both  original  image  and  the decoupled components. Please describe your observation about the plotted images. (5’)

(3) Change the original image into gray level and show the gray image. Write the transformation code by yourself. Please describe your observation about the plotted images. (5’)

2. Task 2 (35 marks)

In this task, we use the monochrome image Lenna (i.e., “lenna512.bmp”) to do the following sub tasks, and let’s call the original image Lenna as I0.

(1) Write a function to measure the Peak Signal to Noise Ratio (PSNR) between two gray images in dB. For the peak value use 255. (5’)

where mse is the mean square error, and it is evaluated as:

(2) I0 -> down-sampling to I1  with 1/2 size of I0  (both horizontally and vertically) using nearest neighbor interpolation (implement it by yourself). Display it and compare to the original image. Explain your findings in the report; (10’)

(3)  I1->  up-sampling  to   I1’  with  the   same  size  of  I0    using  (a)nearest   neighbor interpolation;  (b)  bilinear  interpolation;  (c)  bicubic  interpolation.    Display  it  and compare to the original image. Explain your finding in the report.  (10’)

(4) Calculate the PSNR between the original image I0  and the up-sampled images, i.e., nearest,   bilinear,   and   bicubic,   respectively.   Compare   the   results   of   different interpolation methods. Explain your finding in the report. (10’)

(Note: for the bilinear and bicubic interpolation, you use the matlab function directly).

Image

nearest

bilinear

bicubic

PSNR (dB)

3. Task 3 (12 marks)

In this task, we use the monochrome image Lenna (i.e., lenna512.bmp) to do the  following sub tasks. You need to conduct power-law transform on the input image,  where power-law transform. is  s  = cr-, please plot the transformed images with c=1, Y=0.04, 0.4, 5, 25. Please write one function to generate this image instead of calling  matlab function directly and explain your finding in the report. (12’)

4. Task 4 (38 marks)

1) Add AWGN noise to the image Lenna (i.e., lenna512.bmp) and display the noisy image. Name it as im_SP. Please write one function to generate this image instead of calling matlab function directly (you can use Matlab function to generate uniform random numbers, e.g., rand()). (the  μ   and  σ  of the gaussian,  please set as the following: treat your ID number as a number set, compute the  μ   and  σ  for the gaussian. e.g., ID=1234567,  μ   =(1+2+3+4+5+6+7)/7=4, and the corresponding  σ .     please write down the computing process in your report, without this process, 5-mark deduction will be conducted.) and set k in the ppt slides as 0.1, 0.5, 0.7, 1. Plot the images with different k in your report and write your observation and analysis from the plotted images.

(10’)

2) Apply the median filter with a 3X3 window and a 5X5 window on the image im_SP (you  can  use  Matlab  function  medfilt2).  Display  and  evaluate  the  PSNR  of  the obtained images.  For each window size, comment on how effectively the noise is reduced while sharp edges and features in the image are preserved. (8’)

3) Implement the averaging filter 3X3 to filter the image im_SP by yourself (you are not allowed to use Imfilter and fspecial directly). Compute the PSNR and display the filtered image. You can use zero padding for the boundary pixels. (8’)

4) As you experimented with the averaging and median algorithms, what different “performance” did you notice? Which one is better for removing salt & pepper noise? and why? (12’)

Lab Report

Write a short report which should contain a concise description of your results and observations. Include listings of the Matlab scripts that you have written. Describe each of the images that you were asked to display.

Answer each question completely:

-   Do not attach the code at the end of the report, just put the useful code under each question.

-   The results maybe contain some figures, please add some index and caption of each figure.

Report format: Single column; Font size: #12; Page number: no more than 15;

Submission before 2025-03-25.

-   Electrical version to LM with a rar (ZIP) of all files

Rar file name: INT302-Lab1-Name-studentID.rar/zip

•    One file with same file name of Rar/zip File: Report ( with studentID, name, Lab title on the homepage)

•    One folder: codes and other materials. (I can run it directly)

Marking scheme

80%-100%  Essentially complete and correct work.

60%-79%   Shows understanding, but contains a small number of errors or gaps.

40%-59%  Clear evidence of a serious attempt at the work, showing some understanding, but with important gaps.

20%-39%   Scrappy work, bare evidence of understanding or significant work omitted.

<20% No understanding or little real attempt made.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图