代写CCC8015 Generative Artificial Intelligence代做留学生Python程序

CCC8015 Generative Artificial Intelligence

Individual Assignment

Due: 23:59 Friday 28 Mar 2025

Important notes

●   Point  Allocation: This assignment carries a total of 100 points, which will be awarded based on the criteria outlined in the grading rubric. It accounts for 14% of your final score.

●   Use of Visual Aids: You are encouraged to enhance your report with diagrams or charts where appropriate. Visual aids should be used to complement and clarify the concepts discussed in your text.

●   Citation Requirement: If you refer to or incorporate external information, proper citation is  mandatory.  This  includes  any  direct  quotes,  paraphrased information, or data and statistics you include in your report.

●   Generative AI Use: The use of generative AI tools is permitted and even encouraged to assist  with  the  creation  of  your  report.  However,  it  is  imperative  that  any  content generated by AI is clearly indicated as such in your submission. This transparency is necessary  to  maintain  academic  honesty  and  will  be  taken  into  consideration  during grading.

●   Plagiarism Policy: Originality in your work is crucial. Plagiarism, which includes copying someone else's work without credit, submitting someone else's work as your own, or using generative AI tools to create content without disclosure, will lead to a failing grade for this assignment.

●   Similarity Report: The acceptable similarity threshold is 25%. Assignments surpassing this threshold may be flagged for plagiarism. However, if the system primarily detects quotes from   questions and references, such matches should be disregarded.  We specifically evaluate the similarity  of the 'content' to ensure it falls below the 25% threshold.

●   Grading Rubric: Assignments will be evaluated based on a clear demonstration of subject mastery, critical thinking and originality, logical organization, writing quality, effective use of visual aids and references, and adherence to assignment guidelines.

●   Concerning late submissions for assignments in CCC8015, we are implementing a segmented deduction  scheme. For assignments, there will be a 10% deduction  for submissions within 3 days, 30% for submissions within a week, and no points awarded for submissions exceeding one week.

●   For students with special educational needs (SEN), there will be a one-week extension of the submission deadline (with an additional 20% time allowance).

Deliverable

Assignment Deliverable:

Submission Guidelines: (Report + Google Colab PDF document)

1.   Your report should include tables, figures, and a reference list.

2.   A title page is not required.

3.   Submit a Google Colab PDF document demonstrating your code implementation and data visualizations.

When preparing your assignment, please ensure the following:

1.   Answer all the questions

2.   The total word count should not exceed 1500 words, excluding the questions, appendix, and references.

3.   The 1500-word limit should be distributed across all the questions as needed. There is no requirement for an equal allocation of words to each question.

4.   Upload your assignment in either PDF or Word format. Other file formats are not permitted.

5.   When submitting your assignment via Turnitin, download the document first and then upload the downloaded file. This will prevent any issues with accessing your assignment for grading.

6.   Do not include the questions in your assignment to avoid potential high similarity scores in Turnitin.

7.   You are encouraged to use ChatGPT to assist you in completing your assignment.

8.   Formatting guidelines:

。 Font: Times New Roman

。 Size: 12

。 Color: Black

。 Spacing: No specific requirements

Background

This assignment aims to leverage generative AI for data analysis. Imagine you are a novice in the field of data science, but you have diligently recorded your daily expenses over the past two years. As a result, you have amassed a dataset detailing your daily expenditures.

Your task is to utilize generative AI for in-depth data analysis, including visualization, insight discovery, and to make recommendations for enhanced future financial planning based on your expenditure patterns over the next year.

In your assignment, you should:

●   Analyzing and presenting data in your Google Colab using Python. Communicating  your findings and interpretations through written explanations and graphs. Based on  your findings, you will be expected to provide recommendations. Show these graphs and findings in the Word documents.

Data

Dataset name: ‘Family_expenditure_dataset_CCC8015.csv

 

Definition of each columns

1.   Rental Expense: Expenditure related to renting an apartment, with payments due on the last day of each month.

2.   Transportation: Includes daily transportation expenses as well as long-distance transportation costs.

3.   Food: Expenses encompassing payments for restaurants or any food consumption.

4.   Water Expense: Costs associated with water usage in the apartment.

5.   Electric Expense: Expenditure on electricity usage within the apartment.

6.   Clothing: Expenses for purchasing clothes, occurring in specific months only.

7.   Entertainment: Costs related to travel or entertainment activities such as movies or theme parks.

8.   Sport: Expenses for exercise-related activities, including fees for courts and equipment.

9.   Investment: Allocation of funds for family investments on a monthly basis.


Instructions for loading the CSV to Google Colab:

Step 1: Download the dataset 'Family_expenditure_dataset_CCC8015.csv'.

Step 2: Click on the 'Files' icon and then upload the dataset to the files section.


Step 3: Execute the code in the code cells.

import pandas as pd

# Load the CSV file into a Pandas DataFrame.

df = pd.read_csv('Family_expenditure_dataset_CCC8015.csv')

# Display the first few rows of the DataFrame.

df



Question 1: [25 Marks]

Task 1: Create a pie chart to visualize the proportion of expenses. Generate the code and  successfully run it in Google Colab. Display the graph in your Google Colab. [15 Marks]

Task 2: Include the generated pie chart in the report and analyze the data. Offer interpretations or insights. [10 Marks]

Question 2: [25 Marks]

Task 1: Conduct a monthly time series analysis (line chart) of the 'Water Expense' column.     Generate the code and successfully run it in Google Colab. Display the graph in your Google Colab. [15 Marks]

Task 2: Include the time series graph in the report and analyze the data trends. Offer interpretations or insights. [10 Marks]

Question 3: [25 Marks]

Task 1: Conduct a monthly time series analysis (line chart) of the 'Electric Expense' column.  Generate the code and successfully run it in Google Colab. Display the graph in your Google Colab. [15 Marks]

Task 2: Include the time series graph in the report and analyze the data trends. Offer interpretations or insights. [10 Marks]

Hints: When using ChatGPT to generate code (assuming you have already imported CSV into your Google Colab),

1.   AI may assist you in inputting your data (refer to steps 2 and 3). Exclude the code from steps 2 and 3 when running it.

2.   The code from steps 4 and 5 should only be included once in Question 2. Remove the code if it is generated again by AI for other questions.

 

Task 1: Ask ChatGPT to explain the following code and answer the following questions:

4.1: Explain the code snippet provided below. In this question, you should clarify what the input and output are. [10 Marks]

4.2: What is the purpose of the first three lines of the code? Why do we need to set these libraries with shorter terms, for example, pandas as pd? Is the code executable if the first three lines are not included? [15 Marks]

***The green words marked with # in the code represent comments for human readability.    These comments are intended to provide hints for answering questions and are not meant for assessing the dataset. Please note that you are not required to include code to load or assess   the dataset in this question.***


import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

# Load the dataset

# Assuming 'df' contains your dataset with columns 'Transportation' and 'Entertainment'

# Create a scatter plot to visualize the correlation

plt.figure(figsize=(8, 6))

sns.scatterplot(x='Transportation', y='Entertainment', data=df)

plt.title('Scatter Plot of Transportation vs Entertainment')

plt.xlabel('Transportation')

plt.ylabel('Entertainment')

plt.show()






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图