代做ECON1272 Basic Econometrics帮做R程序

ECON1272

Basic Econometrics

Individual Assignment

This is an individual assignment where you must work alone.  You must submit an electronic copy of your assignment in Canvas in pdf, doc or docx format and your R code must be copied into Question 4.  Hard copies will not be accepted. Show your calculations (if any) as well as answering the questions in clear full sentences.  Log referrers to natural logarithm!

Use the dataset: WDI_2404.RData

Greenhouse gas emissions (GHG) per capita is an important contributor to global warming. The Paris Agreement (2015) foresees participating states to submit a Nationally Determined Contribution (NDC) to mitigate greenhouse gas emissions. You are a newly hired analyst tasked to model greenhouse gas emissions per capita worldwide. Assume that the outgoing research officer had started working on the econometric model to assess some of the drivers of GHG emissions. Now as an incoming research officer your job is to finish this research. Your variables of interest are:

TGHG =         Total greenhouse gas emissions (kt of CO2 equivalent)

Pop     =         Population, total

GDPpc=          GDP per capita (constant 2015 US$)

Mnf    =         Manufacturing, value added (% of GDP)

REC    =          Renewable energy consumption (% of total final energy consumption)

RIF     =          Renewable internal freshwater resources per capita (cubic meters)

TNRR =         Total natural resources rents (% of GDP)

Trade   =         Trade as % of GDP

LPI      =         Livestock production index

Dependent variable:

Greenhouse gas emissions per capita (GHGpc): We would like to estimate the relationship of other factors with this variable. It is defined as a fraction of Total greenhouse gas emissions over Total Population.

Hint: Please create the level form. of your dependent variable in R, greenhouse gas emission per capita for each country first.

Explanatory variables:

GDP per capita (GDPpc): The richer a country is, some scholars expect higher greenhouse gas emissions per capita. Whether or not this relationship is linear or even reversible at high GDP per capita levels is hotly debated (see the concept of the Environmental Kuznets Curve).

Manufacturing, value added as % of GDP (Mnf): A larger manufacturing sector of a country, is likely associated with more emissions.

Renewable energy consumption in % of total final energy consumption (REC): When a country has a larger share of renewable energy consumption, we expect it to be associated with a lower cp. emissions of greenhouse gas per capita.

Renewable  internal freshwater  resources  per  capita  (RIF):  Freshwater  reserves  are  an indicator of hydro-electric potential, and thus a cleaner generation portfolio.

Total natural resources rents in % of GDP (TNRR): High levels of natural resources are often associated with the concept of “resource lock-in”, or “fossil-fuel heavy pathways” . The higher the natural resource endowment and rent, according to this theory, the higher their expected usage in the economy.

Trade as % of GDP (trade): Countries with higher levels of trade theoretically have better access to newer and cleaner technologies.

Livestock production  index:  Livestock production index includes meat and milk from all sources, dairy products such as cheese, and eggs, honey, raw silk, wool, and hides and skins (2014-2016 =  100). Higher levels  of livestock are often associated with higher emissions (especially methane).

All data originate from the World Bank (WDI). Please assess whether the above variables are truly associated with GHG emissions, and if yes, how. Answer the following questions:

QUESTIONS:

1)        Use R to create your dependent variable first, then run the following cross-sectional regression. (Please note the natural logs and construct these in R as needed):

log(GHGPc) = β0  + β1 log(GDPPc) + β2 REC + β3 MNF + β4 log(RIF) + β5 TNRR + β6 LPI + u

(Equation 1)

a.    Present your regression results in a table below (R output):   4 marks

b.    Interpret the constant (2.5 marks) and its p-value (1.5 marks).    4 marks

c.    Interpret the coefficient on GDP per capita and its p-value (1.5 marks each).    3 marks

d.    Interpret the coefficient on manufacturing value added and its p-value (1.5 marks each).    3 marks

e.    Interpret  the   coefficient  on  renewable   energy  consumption   (as   %  of   total  energy consumption) and its p-value (1.5 marks each).    3 marks

f.    Interpret the coefficient on the livestock production index and calculate its t-stat.

Interpret the calculated t-statistic (1.5 marks each).    3 marks


g.    Interpret the R2 of the regression.           2 marks

h.    Explain heteroscedasticity, its consequences (2 marks) and present the results of Equation

(1) with heteroscedasticity robust standard errors (3 marks).   Explain  if any  of your coefficient significance levels change (1 mark).          6 marks

2)  Describe each of the Gauss-Markov assumptions and specify if they are likely to hold for the regression in Question 1 or not.           10 marks

3)   Present a functioning R code reproducing the results. This is a critical part of the assignment

without which we’ll initiate a plagiarism check.         2 marks

Assignment Total: 40 marks


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图