代做EVS116 From Molecules to Materials: Deconstructing the environment 2020/2021代写Java编程

EVS116 From Molecules to Materials: Deconstructing the environment

2020/2021

Laboratory Practical 6: Synthesis of gold nanoparticles

Background

Colloidal gold is a suspension of submicrometre-size particles of gold in a fluid, usually water. The liquid is usually either an intense red colour (for particles less than 100 nm) or blue/purple (for larger particles).

Due to the unique optical, electronic, and molecular-recognition properties of gold nanoparticles, they are the subject of substantial research, with applications in a wide variety of areas, including electron microscopy, electronics, nanotechnology, and materials science.

Colloidal gold has been used since ancient times:  the synthesis  of colloidal gold was crucial to the 4th-century  Lycurgus  Cup,  which changes colour depending on the direction of the light. Later it was used as a method of staining glass.

 

Solutions of gold nanoparticles of various sizes. The size difference   causes the difference in colours.

Generally,  gold  nanoparticles  are  produced  in  a  liquid  ("liquid  chemical  methods")   by  reduction  of chloroauric acid (H[AuCl4]).  After dissolving H[AuCl4], the solution is rapidly stirred while a reducing agent is added. This causes Au3+   ions to be reduced to neutral gold atoms.   As more and more of these gold atoms form, the solution becomes supersaturated, and gold gradually starts to precipitate in the form of sub-nanometer particles. The rest of the gold atoms that form stick to the existing particles, and, if the solution is stirred vigorously enough, the particles will be fairly uniform in size.

Equipment

Glassware:

Note all glassware needs to be acid-washed, and triple rinsed in deionised ultrapure water (not distilled water, the latter is not ion-clean)

    4 x 100 mL conical flasks

•    20 mL glass pipettes & bulbs

•    2 mL pipettes and a dropper

    4 test tubes

•    Stirring bars (either 3 per pair, or 1 per pair and a retriever)

•    4 X 50 mL Screw-top falcon tubes

•    Marker for labelling

•    UV spectrophotometer (Scanning)

Chemicals:

•    50 mL 1 mM hydrogen tetrachloroaurate, HAuCl43H20

•    10 mL 1% trisodium citrate, Na3C6 H5O7.2H2O

•    1 M sodium chloride solution, NaCl and 10 mM NaCl

•    Freshwater

Procedure for Synthesis and Characterisation of Gold Nanoparticles

Some metal nanoparticles may be synthesised by heating a suitable metal salt solution with citrate. This method uses the citrate reduction to form. the nanoparticles, and the excess citrate helps to stabilise the gold  nanoparticles as  a dispersion. The  particles  are  therefore  not “dissolved”  but  are  suspended  or dispersed in the liquid phase of the media.

The formation of gold nanoparticles can be observed by a change in colour, since small nanoparticles of gold are red. If the citrate is in excess in the reaction mixture, a layer of absorbed citrate anions on the surface of the nanoparticles will give them a net negative surface charge. The charge repulsion of the particles (like charges repel) will help to keep the nanoparticles separate and therefore dispersed. The presence of this colloidal suspension can be detected by the reflection of a laser beam from the particles.

Objectives.

Your task is to:

1. To synthesise gold nanoparticles using the citrate reduction method and observe the presence of particles with a laser pen.

2. To characterise the major absorption peaks with the observed colour of the resulting dispersion.

Experiment

Colloid chemistry, and any experiments working with trace  metals  requires that  all glassware  is  acid- washed, and triple rinsed in deionised ultrapure water (not distilled water, the latter is not ion-clean). Reliable results depend on a high level of cleanliness.  All the glassware has been cleaned for you.

Prepare a dilution series of the 1 mM HAuCl4  stock solution by carefully pipetting each of the following into conical flasks to form 20 mL solutions:

Volume of 1 mM HAuCl4  stock

(mL)

Volume of ultrapure water

(mL)

Final Gold concentration (mM)

0

20

0 (control)

8

12

0.4

12

8

0.6

20

0

1.0

Using the hot plate provided; heat the flasks one at a time, with a magnetic stirrer bar so the solution is continuously mixed, until the solution is just about boiling.

[Safety: Do not touch the hotplate surface! Wear Eye Shields]

When the solution is just at boiling point (not before), add 2 ml of 1% trisodium citrate solution to the conical flasks. The best technique is to make sure the gold solution is just boiling as you add the citrate solution, so add the citrate solution fast.  The gold nanoparticles will form in the solution gradually as the citrate reduces the gold (III).

Allow this gold solution to cool.

Repeat the procedure with the all the remaining gold solutions, including the control.  When each solution is cool, remove each stirrer bar with the aid of a magnet or forceps.

Question (i): Ultra-pure water was used for the preparation of the solutions used in the synthesis. Why do you think we have done this?

Question (ii): Do you think that the type of surface charge will alter the dispersivity of the nanoparticles? What do you think  would happen  to  the dispersion if there is no net charge  (neutral) on the particle surface?

For use in the research laboratory, one would normally then dialyse the particle dispersions in ultrapure water to remove excess reagents and to clean up the particles. However, for our purposes we can proceed with some simple spectrophotometry to characterise the samples.

The absorption spectra of nanoparticle dispersions.

It is possible to deduce information about the relative particle sizes in each of your dispersions using some simple absorption spectrophotometry. If a visible spectrum of the dispersion is obtained, and different-sized gold nanoparticles give slightly different colours, then the absorption peak should also be slightly different in each of your dispersions.

The measurements will be carried out using a UV/Vis Spectrometer.   Full instructions for the operation of the spectrophotometer are in the laboratory, and staff are there to help you set up. Use 3 ml cuvettes, but keep your solutions.

•          Obtain  the  visible  spectra  of  your  dispersions from  700 to 400  nm.  Use  ultra  pure  water  as  the reference (blank). Print out the spectra, or use the data from the instrument to plot the spectra for each of your dispersions.

•          Indicate  on your  graphs  the wavelength  range where the transmittances are greatest and where they are least for each solution/dispersion.

•          Obtain the wavelength corresponding to the maxima in absorbance.

 

Absorbance range/nm

λmax/nm

Control

 

 

Au solution 1

 

 

Au solution 2

 

 

Au solution 3

 

 

Question (iii):  What is  the  relationship between the gold concentration in the original solution and the wavelength where the peak emission occurs? Do you think the particle size distribution is similar in each of the prepared nanoparticle dispersions?

Question (iv): Which one do you think has the particles of the biggest average size?

•          From  the  visible  spectra,  choose  a suitable wavelength to  measure the absorbance of the 3 gold nanoparticle dispersions.

•          Plot the absorbance against the concentration of gold in each solution.

A plot of A against C should be linear for a solution of absorbing species.  In this case the absorbing species are nanoparticles, so it will be interesting to see whether the plot is linear or not.

Question (v): What do you observe from your graph? What is the significance of your observation with respect to particle size or dispersion state? Do you think the Beer-Lambert Law still applies to particle dispersions?

Effect of NaCl on particle dispersions.

Adding a cation (e.g. Na+) to the dispersion of gold nanoparticles may screen the negative charge on the particles, allowing them to approach more closely (agglomerate). This results in a colour change in the dispersion, which reflects the change in size of the particles due to agglomeration.

•    Put 2 ml of one of your nanoparticle dispersions into each of four test tubes.

•    Keeping the first tube as your control (nothing added), add 5-10 drops of 0.1mM, 10mM or  1  M NaCl solution to the next 3 tubes one tube (one solution per tube, each tube a different solution). Note the change of colour of the solution as the nanoparticles get closer together.

•    Measure also the spectra of your solutions with the different amounts of NaCl added.

Question (vi): How does the spectrum change with increasing NaCl concentration?  What does this tell us about the dispersion?

At the end of the class, please clean up your bench, but DO NOT THROW AWAY your gold nanoparticle (NP) solutions:  these will be retained for subsequent analysis.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图