代做MATH1014 Calculus II Problem Set 3 L01 (Spring 2025)调试SPSS

MATH1014

Calculus II

L01 (Spring 2025)

Problem Set 3




1.     (a)     Let  m   and  n   be non-negative integers.     Evaluate the following integrals, distinguishing all possible cases for  m  and  n.

(b)    Let  n   be apositive integer and let  f: ℝ → ℝ   be afunction defined by

f(x) = a1 sin x + a2 sin 2x + ⋯ + an sinnx ,

where  a1, a2, … , an    are real numbers.     Show that we must have

2.     Evaluate the following antiderivatives.

Hint:         In (d),first consider  ex 2 dx.

3.     Evaluate the limit

 

Hint:         Take natural logarithm.

4.     Let  a  > 0   and let  f: [−a, a] → ℝ  bean odd continuous function.     Show that

5.     The  following  are “ proofs” of some obviously false statements.    Point  out  what  is  wrong in each of these “ proofs”.

(a)    A “ proof” of the statement that “π  = 0”.



(b)   A “ proof” of the statement that “every integral equals zero” :

(c)    A “ proof” of the statement that “0  =  1”.

6.     Let  f   be afunction which is continuously differentiable on   [0, 1].

(a)    For every   a, b ∈ [0, 1], show that

 

(b)    Let  n  ≥ k  ≥ 1  be  integers.    Using  the  result from  (a)  and the  generalized Mean Value

Theorem for integrals (Example 5.49 (a)), show that there exists  such that 

(c)    Now for each  n  ∈ , we let  Show that 

Hence using the result from (b),deduce that

 



 7.     Let  f: [0, +∞) → ℝ   be the function defined by  f(x) = xex. (a)    Show that  f   is strictly increasing.

(b)    Now  f  is one-to-one according to (a), so we let  g   be the inverse of  f, i.e.  g  = f −1 .

(i)     Write down the domain of  g.     Show that

 

for every  x   in the interior of the domain of  g.

(ii)    Using  the  result  from  (b)  (i)  or  otherwise,  evaluate  the  antiderivative  ∫ g(x)dx,

expressing your answer in terms of  g   and other elementary functions only. 

(iii)   Hence,or otherwise, evaluate the integral 

8.     (a)     Let  n   beanon-negative integer, and let  f: ℝ → ℝ   be the polynomial f(x) = (x2   1)n.

(i)     Show that  (x2  − 1)f (x) − 2nxf(x) = 0  for every  x   ℝ .

(ii)    Hence, show that

(x2   1)f(n+2)(x) + 2xf(n+1)(x) − n(n + 1)f(n)(x) = 0 

for every  x  ∈ ℝ .

Hint:         Recall “ Leibniz rule” in chapter 3.     Part (a) is almost the same as Example 3.69. (b)    For each non-negative integer  n, let  pn : ℝ → ℝ   be the function

 

(i)     Using the result from (a) (ii), show that

 

for every non-negative integer  n.

(ii)    Hence deduce that if  m   and  n   are distinct non-negative integers, then

 

9.     For each non-negative integer  n, let

 

(a)    For each positive integer  n, show that

 

Hence show that

 

(b)    Using the result from (a), find the value of  In   in terms of  n.



 




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图