代做EF308 - Econometrics and Forecasting调试SPSS

EF308 - Econometrics and Forecasting

Module Assignment

This assessment comprises 100% of your assessment for the Econometrics and Forecasting module. It consists of two parts:

-    Group work equal to 40% of the module grade

-     Individual report equal to 60% of the module grade

For this assignment you are asked to imagine a new financial advisory product aimed at students and produce the data analytics suitable for supporting the launch of the product.

Deadlines:

Group Work: due April 11th, 7pm.

Individual Report: due April 11th, 7pm.

The product: Your proposed product can be anything at all that is new, but ‘new’ doesn’t mean that it is completely new, it might just be an iteration or improvement of an existing service that is already offered. You won’t really be judged explicitly on the quality of the idea, but it does speak to the overall interest of your project. Illustrate your proposed product with relevant screenshots and visuals, as you see fit, in order to build a story here. Build a launch story about the product - essentially, breathe a bit of life into your proposed product so that it feels real.

The data: You could either mock up data using Generative AI or use kaggle.com to identify a suitable pre-existing dataset. The dataset doesn’t need to be perfectly aligned, as usually that isn’t possible. But more that it is reasonably aligned to your topic. For example, if you propose an app to allow students to save for holidays, you might use a holiday booking dataset. If you propose to sell credit cards to students, you might use a credit card default-rate dataset. Don’t worry if the dataset doesn’t perfectly match - if it is not too close, your presentation might simply say something along the  lines of ‘while we are still trying to identify useful data, here is an analysis of some related data …’. Thats all thats needed.

The data task: The data task is the core learning and assessment point of the work. Broadly speaking you are asked to use a combination of skills learned across the classes. This includes: data cleaning (what we do in the first two classes, and bits of all the other classes); regression analysis (building a model that explains how the data works); and, perhaps, forecasting (incorporating some aspect of forecasting, or looking into the future in your analysis).

What to submit:

1. For the group project (40%): Submit a ten-minute video pitching your product idea. An approximate structure for this might look like: about 5 slides outlining the problem you are solving, how your product idea solves it, and what data investigations you carried out to develop the product idea. You might also want to include a working Streamlit file of your product, in order to ‘demo’ it.

2. For the individual assignment (60%): A well-formatted report on  the  proposed investment of 1,500 words length, along with a link to a Google Colab coding file. It is acceptable that there is shared content between the group members - especially in terms of coding and the overall idea - but there should be an identifiable element of the content that is your own work. The report should look professional: give good attention to visuals etc and look at professional reports e.g. from consulting houses like McKinsey to get an idea on how to structure. The coding file simply needs to outline the steps you took to analyse the data from start to finish. It doesn’t need a story or text, I can follow the format. The same coding file can be submitted by all group members, if you wish.

Use of ChatGPT and similar models: Feel free to use any amount of Generative AI assistance as you wish.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图