代做CHEN E4880 – Atomistic Simulations 2025 Project 1: Properties of an Elemental Transition Metal代写留学

CHEN E4880 – Atomistic Simulations

Project 1: Properties of an Elemental Transition Metal

(Due on February 27, 2025 at 11:59 PM)

Transition metals are of great technological relevance for the chemical industry due to their unique properties and versatility in various applications, including catalysts, magnetic materials, and electronics. In this project, you will explore the properties of an elemental transition metal, for now, in the absence of temperature or pressure.

The technical objective of this project is to familiarize yourself with the LAMMPS software and its  input/output file formats. Scientific objectives are to find the ground-state energy, lattice parameter, vacancy formation energy, and one surface energy of a face-centered cubic (FCC) transition  metal. As you work through the project, you will also learn about the importance of convergence parameters and the limitations of interatomic potentials used in atomic-scale simulations.

Geometry optimizations (relaxations)

In nature, a crystal in equilibrium is automatically in the lowest energy (ground-state) configuration. The ground-state lattice parameters and atomic positions define the ground-state lattice geometry that minimizes the lattice energy. The ground-state lattice parameters are generally not known a priori. Given a reasonable guess, we can perform. a geometry optimization, also sometimes called relaxation, that finds the lowest energy configuration by adjusting the atomic positions and lattice  parameter(s) until an energy minimum is found.

Vacancy formation energy

The vacancy formation energy Ev is defined as the energetic cost to remove an atom from a lattice site and reinsert it into the bulk of the material. This leads to the energy difference

where Ebulk and EN - 1 are the energies of the perfect bulk structure with Nbulk atoms and the defect structure with one vacancy containing (N − 1) atoms, respectively. By evaluating the bulk energy per atom (Ebulk /Nbulk) and multiplying by the number of atoms in the vacancy structure (N − 1), we obtain the bulk energy of (N − 1) atoms and can compare the two structures.

Surface energy

The surface energy is the energy required to truncate an infinitely extended crystal along a specific lattice  plane.  Calculating  surface  energies follows a similar overall approach to calculating vacancy formation energies, but different convergence parameters must be considered.

Surface relaxations and pair potentials

The following equation gives the Lennard-Jones potential

Pair potentials, such as the Lennard-Jones potential, show outward surface relaxations, which disagrees with experimental observation.

1.   Lattice constant of elemental platinum

a.   Calculate the lattice constant (in Å) and total energy (in eV) using the supplied LJ potential. First, use LAMMPS’ built-in minimizer (input file lmp-in.1a-relax), then find the lattice constant by manually adjusting the lattice parameter (input file lmp-in.1a-single). Start with a lattice parameter close to the relaxed lattice parameter. Plot the energy as a function of the lattice parameter from above to below the optimized value (Figure 1) and identify the equilibrium lattice constant.

Hint: See the project guide for an explanation of the LAMMPS input format.

b.   Repeat the calculations, both automated and manual (Figure 2), for the supplied embedded-

atom model (EAM) potential (input file: lmp-in.1b-single). Hint: Don’t forget to upload the EAM potential file to nanoHUB.

c.   How do the calculated lattice constants compare to the experimental value?

d.  Which potential agrees better with experiment? Is this result expected? Explain your answer. Hint: Consider how the different potentials were constructed (see table below).

2. Vacancy formation energy of Pt

a.   Compute the vacancy formation energy (in eV) with the provided LJ potential as a function of the supercell size. Do not relax the atomic positions after taking out an atom. Perform a convergence test and plot the energy against the convergence parameter (Figure 3).

b.   Calculate  the  ratio  of  the  vacancy  formation  energy  to  the  cohesive  energy  per  atom. Document how you calculated the cohesive energy. Hints: The (conventional) FCC unit cell contains 4 atoms. Use the optimized LJ lattice parameter from problem 1.

c.   Repeat your calculation, but relax the atomic positions after creating the vacancy. Perform another convergence test and add results to Figure 3. Describe how the vacancy formation energy changes compared to the unrelaxed calculations. Hint: Adjust your LAMMPS input file for relaxations (see problem 1).

d.   Now  compute the vacancy formation energy using the provided  EAM potential.  Do  it as accurately as you can. Report your convergence test (Figure 4). Use what you learned in parts a. and b. Hint: Use the optimal EAM lattice parameter from problem 1 as the initial value.

e.  Without relaxation, the absolute value of the ratio of the vacancy formation energy to the cohesive energy per atom equals 1 for the Lennard-Jones potential. Explain why.

f.   Why does the vacancy formation energy decrease when the atoms are allowed to relax?

3.   Surface energy of the Pt(100) facet

a.  Which two convergence parameters need to be considered for surface slab calculations?

b.   Compute the surface energy of the Pt(100) surface using the LJ potential. Document your approach. Perform. and plot convergence tests (Figure 5). Report your result in meV/Ǻ2 .

c.   Repeat with the EAM potential, including convergence tests (Figure 6). Please do not perform. relaxations for problem 3.

4.   Conceptual understanding

a.   Calculate the distance r/  where the LJ potential reaches its minimum (Derivation 1). Express r/  in terms of ε and σ , and evaluate using the values from your calculations.

b.   Determine  the  nearest-neighbor  distance  dNN    in  the  optimized  structure  of  problem   1 (Derivation 2).

c.   Why is dNN  different from r/ ?

d.  Why are numerical simulations needed even for simple models such as the LJ potential?

5.   Short answers

a.   For what class of compounds are Lennard-Jones potentials most suitable (name 1 example)?

b.   For what class of compounds/materials are EAM potentials most suitable (name 1 example)?

c.   Name 1 example of materials/interactions for which neither LJ nor EAM are appropriate.

d.

Assignment

1.   Perform. the simulations described on the previous page.

2.   Document your work in a two-page memo.

a.  Address all questions.

b.   Highlight key results (lattice parameters, energies, etc.).

c.   Refer to all figures and derivations.

d.   Keyword style. is fine if the presentation is clear.

3.   Include Figures 1–6 and Derivations 1 and 2 in the appendix. Pictures of hand-written notes are fine for derivations.

4.   For problems 1–3, include examples of your input files in the appendix.

Make sure to follow the formatting guidelines. Limit the text portion of your report to no more than two pages.

Provided Files

File

Description

Comment

lmp-in.1a-single

LAMMPS input file for a single point calculation of FCC Pt using a Lennard-Jones potential

lmp-in.1a-relax

LAMMPS input file for geometry optimizations (relaxations) using a Lennard-Jones potential

lmp-in.1b-single

LAMMPS input file for a single point calculation of FCC Pt using an EAM potential

EAM potential file required

lmp-in.1b-relax

LAMMPS input file for geometry optimizations (relaxations) using an EAM potential

EAM potential file required

Pt-Adams1989.eam

EAM potential for Pt. This potential was published in Adams et al., J. Mater. Res. 4, 102-112 (1989) and can be obtained from

http://www.ctcms.nist.gov/potentials

The Lennard-Jones potential parameters (ε = 0.200 eV; σ = 2.540 Å) were determined by a fit to the lattice constant and the vacancy formation energy. The EAM potential was fitted to sublimation energies, elastic constants, and vacancy formation energies.

Problems 2 and 3:

We do not provide separate files for Problems 2 and 3. Use the files provided for problem 1 and start from there. See the project guide for hints regarding creating vacancies and surface slab models.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图