COP 3402 代做、代写 c/c++,Python 程序
Homework 1: P-Machine
COP 3402: Systems Software
Spring 2025
See Webcourses  for due dates.
 
Purpose
In this homework you will form a team and implement a virtual machine called the P-machine.
Teams must be either 1 person team or 2 people team.
Directions
(100 points) Implement and submit the P-machine as described in the rest of this document.
 
For the implementation, your code must be written in ANSI standard C and must compile with gcc and run correctly on Eustis. We recommend using the flag -Wall and fixing all warnings.
What to Read
Our recommended book is Systems Software: Essential Concepts (by Montagne) in which we recommend reading chapters 1-3.
 
In this assignment, you will implement a virtual machine (VM) known as the P-machine (PM/0). 
 
P-Machine Architecture
The P-machine is a stack machine that conceptually has one memory area called the process address space (PAS). The process address space is divided into three contiguous segments: The first 10 locations, called “unused”, the “text”, which contains the instructions for the VM to execute and the “stack,” which is organized as a data-stack to be used by the PM/0 CPU.
Registers
The PM/0 has a few built-in registers used for its execution: The registers are named:
• base pointer (BP), which points to the base of the current activation record
• stack pointer (SP), which points to the current top of the stack. The stack grows downwards., 
• program counter (PC), which points to the next instruction to be executed.
• Instruction Register (IR), which store the instruction to be executed
The use of these registers will be explained in detail below. The stack grows downwards.
Instruction Format
The Instruction Set Architecture (ISA) of the PM/0 hasinstructions that each have three components, which are integers (i.e., they have the C type int) named as follows.
OP​is the operation code.
    L​indicates the lexicographical level (We will give more details on L below)
M​depending of the operators it indicates:
​- A number (when OP is LIT or INC).
​- A program address (when OP is JMP, JPC, or CAL).
​- A data address (when OP is LOD, STO)
​- The identity of the arithmetic/relational operation associated to the OPR op-code. 
    (e.g. OPR 0 2 (ADD) or OPR 0 4 (MUL))
    
The list of instructions for the ISA can be found in Appendix A and B.
P-Machine Cycles
The PM/0 instruction cycle conceptually does the following for each instruction: 
 
The PM/0 instruction cycle is carried out in two steps. The first step is the fetch cycle, where the instruction pointed to by the program counter (PC) is fetched from the “text” segment, placed in the instruction register (IR) and the PC is incremented to point to the next instruction in the code list. In the second stepthe instruction in the IR is executed using the “stack” segment. (This does not mean that the instruction is stored in the “stack segment.”)
Fetch Cycle:
1.- IR.OP ß pas[pc]
​IR.L   ß pas[pc + 1]  
​IR.M  ß pas[pc + 2]
​(note that each instruction need 3 entries in array “TEXT”. 
2.- (PCß PC + 3). 
 
Execute Cycle:
The op-code (OP) component in the IR register (IR.OP) indicates the operation to be executed. For example, if IRencodes the instruction “2 0 2”, then the machine adds the top two elements of the stack, popping them off the stack in the process, and stores the result in the top of the stack (so in the end sp is one less than it was at the start). Note that arithmetic overflows and underflows happen as in C int arithmetic.  ​​​​
PM/0 initial/Default Values
When the PM/0 starts execution. 
 
BP == 499, SP == 500, and PC == 10; 
 
This means that execution starts with the “text segment” element 10. Similarly, the initial “stack” segment values are all zero (BP=499 and SP = BP + 1).
 
The figure bellow illustrates the process address space:
 
 
                                  ​ ​ Last instruction    ​​ ​​​               BP   SP
  0     10                
PAS UNUSED     TEXT OP L M       STACK     ??? 
                       499 500  
        PC                        
 
Size Limits
 
Initial values for PM/0 CPU registers are:
BP = 499 
SP = BP + 1; 
PC = 10;
Initial process address space values are all zero:  
pas[0] =0, pas[1] =0, pas[3] =0…..[n-1] = 0. 
Constant Values:
ARRAY_SIZE is 500
 
 
Note: Be aware that in PM/0 the stack is growing downwards
Assignment Instructions and Guidelines: 
1. The VM must be written in C and must run on Eustis3. If it runs in your PC but not on Eustis, for us it does not run.
2. The input file name should be read as a command line argument at runtime, for example: $ ./a.out input.txt (A deduction of 5 points will be applied to submissions that do not implement this).
3. Program output should be printed to the screen, and should follow the formatting of the example in Appendix C. A deduction of 5 points will be applied to submissions that do not implement this.
4. Submit to Webcourses:
a) A readme text file indicating how to compile and run the VM
b) The source code of your PM/0 VM which should be named “vm.c”
c) A signed sheet indicating the contribution of each team member to the project.
d) Student names should be written in the header comment of each source code file, in the readme, and in the comments of the submission
e) Do not change the ISA. Do not add instructions or combine instructions. Do not change the format of the input. If you do so, your grade will be zero.
f) Include comments in your program. If you do not comments, your grade will be zero.
g) Do not implement each VM instruction with a function. If you do, a penalty of -100 will be applied to your grade. You should only have functions: main, base, auxiliary functions to print but you must not use functions to implement instructions or FETCH. (Appendix D).
h) The team member(s) must be the same for all projects. In case of problems within the team. The team will be split and each member must continue working as a one-member team for all other projects.
i) On late submissions:
o One day late 10% off.
o Two days late 20% off.
o Submissions will not be accepted after two days.
o Resubmissions are not accepted after two days.
o Your latest submission is the one that will be graded.
 
We will be using a bash script to test your programs. This means your program should follow the output guidelines listed (see Appendix C for an example). You don’t need to be concerned about whitespace beyond newline characters. We use diff -w.
 
 
 
 
 
 
Rubric:
If you submit a program from another semester or we detect plagiarism your grade is F for this course. 
Using functions to implement instructions even if only one is implemented that way, means that your grade will be “zero”.
Pointers and handling of dynamic data structures is not allowed. If you do your grade is “zero”.  Only file pointer is allowed.
-100 – Does not compile
10 – Compiles
25 – Produces lines of meaningful execution before segfaulting or looping infinitely
5 – Follows IO specifications (takes command line argument for input file name and prints output to console)
10 – README.txt containing author names
5 – Fetch cycle is implemented correctly
10 – Well commented source code
5 – Arithmetic instructions are implemented correctly
5 – Read and write instructions are implemented correctly
10 – Load and store instructions are implemented correctly
10 – Call and return instructions are implemented correctly
5 – Follows formatting guidelines correctly, source code is named vm.c
Appendix A 
 
Instruction Set Architecture (ISA) – (eventually we will use “stack” to refer to the    stack segment in PAS)
 
In the following tables, italicized names (such as p) are meta-variables that refer to integers.  If an instruction’s field is notated as “-“, then its value does not matter (we use 0 as a placeholder for such values in examples).
 
ISA:
01   – ​LIT​0, M​​Pushes a constant value (literal) M onto the stack
 
02   – ​OPR​0, M​​Operation to be performed on the data at the top of the stack.​​​ ​​(orreturn from function)
 
03   – ​LOD​L, M​​Load value to top of stack from the stack location at  ​​​​​​​offset M from L lexicographical levels down
​​​
04   – ​STO​L, M​​Store value at top of stack in the stack location at offset M 
  from L lexicographical levels down
 
05   – ​CAL​L, M​​Call procedure at code index M (generates new 
   Activation Record and PC ß M)
 
06   – ​INC​0, M​​Allocate M memory words (increment SP by M). First three​​​​​are reserved to   Static Link (SL), Dynamic Link (DL),                    ​​​​​and Return Address (RA)
 
07   – ​JMP​0, M​​Jump to instruction M (PC ßM)
 
08   – ​JPC 0, M​​Jump to instruction M if top stack element is 0
 
09   – ​SYS 0, 1​​Write the top stack element to the screen
 
  ​SYS 0, 2​​Read in input from the user and store it on top of the stack 
 
  SYS 0, 3​​End of program (Set “eop” flag to zero)
   
   
   
 
 
 
OP Code Number OP Mnemonic L M Comment (Explanation)
01 LIT 0 n Literal push: sp ß sp- 1; pas[sp] ßn 
02 RTN 0 0 Returns from a subroutine is encoded 0 0 0 and restores the caller’s AR:
sp ← bp + 1; bp ← pas[sp - 2];  pc ← pas[sp -3];
03 LOD n a Load value to top of stack from the stack location at offset o from n lexicographical levels down
sp ß sp - 1;
pas[sp] ß pas[base(bp, n) - o];
04 STO n o Store value at top of stack in the stack location at offset o from n lexicographical levels down
pas[base(bp, n) - o] ß pas[sp];
sp = sp +1;
05 CAL n a Call the procedure at code address a, generating a new activation record and setting PC to a:
pas[sp - 1]  ß  base(bp, n); /* static link (SL)
pas[sp - 2]  ß bp;​/* dynamic link (DL)
pas[sp - 3]  ß pc;​ /*return address (RA)​
bp ß sp - 1;
pc ß a;
06 INC 0 n Allocate n locals on the stack
sp ß sp - n;
07 JMP 0 a Jump to address a:
PC ← a
08 JPC 0 a Jump conditionally: if the value in stack[sp] is 0, then jump to a and pop the stack:if (stack[SP] == 0) then { pc (← a; } sp ← sp+1
09 SYS 0 1 Output of the value in stack[SP] to standard output as a character and pop:putc(stack[sp]); sp ← sp+1
(You can use printf if you wish) 
  SYS 0 2 Read an integer, as character value, from standard input (stdin) and store it on the top of the stack.sp ← sp-1; stack[sp] ← getc(); 
(You can use fscanf if you wish)
  SYS 0 3 Halt the program (Set “eop” flag to zero)
 
Appendix B (Arithmetic/Logical Instructions)
 
ISA Pseudo Code
   
 
02 – OPR  0, #​​(1 <= # <= 10)
    
 
​​​​1​ADD​​pas[sp + 1] ß pas[sp + 1] + pas[sp]
​​​​​​​sp ß sp + 1;
 
  2​SUB​​pas[sp + 1] ß pas[sp + 1] - pas[sp]
​​​​​​​sp ß sp + 1;
 
  3​MUL​​pas[sp + 1] ß pas[sp + 1] * pas[sp]
​​​​​​​sp ß sp + 1;
 
  4​DIV​​pas[sp + 1] ß pas[sp + 1] / pas[sp]
​​​​​​​sp ß sp + 1;
 
  5​EQL​​pas[sp + 1] ß pas[sp + 1] == pas[sp]
​​​​​​​sp ß sp + 1;
 
  6​NEQ​​pas[sp + 1] ß pas[sp + 1] != pas[sp]
​​​​​​​sp ß sp + 1;
 
  7​LSS​​pas[sp + 1] ß pas[sp + 1] < pas[sp]
​​​​​​​sp ß sp + 1;
 
  8​LEQ​​pas[sp + 1] ß pas[sp + 1] <= pas[sp]
​​​​​​​sp ß sp + 1;
 
  9​GTR​​pas[sp + 1] ß pas[sp + 1] > pas[sp]
​​​​​​​sp ß sp + 1;
 
  10​GEQ​​pas[sp + 1] ß pas[sp + 1] >= pas[sp]
​​​​​​​sp ß sp + 1;
 
   
 
 
 
 
Appendix C
Example of Execution
 
This example shows how to print the stack after the execution of each instruction.
 
INPUT FILE (In this example the program was stored at memory address zero)
For every line, there must be 3 values representing OP, Land M.
 
7 0 45
7 0 6
6 0 4
1 0 4
1 0 3
2 0 3
4 1 4
1 0 14
3 1 4
2 0 7
8 0 39
1 0 7
7 0 42
1 0 5
2 0 0
6 0 5
9 0 2
5 0 6
9 0 1
9 0 3
 
When the input file (program) is read in to be stored in the text segment starting at location 10 in the process address space, each instruction will need three memory locations to be stored. Therefore, the PC must be incremented by 3 in the fetch cycle.
 
10     13     16     19     22     25     …
7 0 45 7 0 6 6 0 4 1 0 4 1 0 3 2 0 4 etc
 
 
The initial CPU register values for the example in this appendix are:
SP = 500;
BP = SP - 1; 
PC = 10;
IR  = 0 0 0; (a struct or a linear array can be used to implement IR) 
Hint: Each instruction uses 3 array elements and each data value just uses 1 array element. 
 
 
OUTPUT FILE (In this example the program was storedat memory address zero)
Print out the execution of the program in the virtual machine, showing the stack and pc, bp, and sp.
 
NOTE: It is necessary to separate each Activation Record with a bar “|”.  
 
​​​​PC​BP​SP​stack
Initial values:​10​499​500
 
​JMP​0​45​45​499​500​
​INC​0​5​48​499​495​0 0 0 0 0 
Please Enter an Integer: 3
​SYS​0​2​51​499​494​0 0 0 0 0 3 
​CAL​0​6​6​493​494​0 0 0 0 0 3 
​INC​0​4​9​493​490​0 0 0 0 0 3 | 499 499 54 0 
​LIT​0​4​12​493​489​0 0 0 0 0 3 | 499 499 54 0 4 
​LIT​0​3​15​493​488​0 0 0 0 0 3 | 499 499 54 0 4 3 
​MUL​0​3​18​493​489​0 0 0 0 0 3 | 499 499 54 0 12 
​STO​1​4​21​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​14​24​493​489​0 0 0 0 12 3 | 499 499 54 0 14 
​LOD​1​4​27​493​488​0 0 0 0 12 3 | 499 499 54 0 14 12 
​LSS​0​7​30​493​489​0 0 0 0 12 3 | 499 499 54 0 0 
​JPC​0​39​39​493​490​0 0 0 0 12 3 | 499 499 54 0 
​LIT​0​5​42​493​489​0 0 0 0 12 3 | 499 499 54 0 5 
​RTN​0​0​54​499​494​0 0 0 0 12 3 
Output result is: 3
​SYS​0​1​57​499​495​0 0 0 0 12 
​SYS​0​3​60​499​495​0 0 0 0 12 
 
 
 
 
Appendix D
 
Helpful Tips
 
This function will be helpful to find a variable in a different Activation Record some L levels down:
 
/**********************************************/
/*​​Find base L levels down​​ */
/*​​​​​​​ */
/**********************************************/
 
int base( int BP, int L)
{
​int arb = BP;​// arb = activation record base
​while ( L > 0)     //find base L levels down
​{
​​arb = pas[arb];
​​L--;
​}
​return arb;
}
 
For example in the instruction:
 
STO L, M  - You can do stack [base (IR.L) +  IR.M]= pas[SP] to store the content of  the top of the stack into an AR in the stack,  located L levels down from the current AR.
 
Note1: we are working at the CPU level therefore the instruction format must have only 3 fields. Any program whose number of fields in the instruction format is graterthan 3 will get a zero.
 
Note2: If your program does not follow the specifications, your grade will get a zero.
 
Note3: if any of the instructions is implemented by calling a function, your grade will be zero.
 
Note4: If you use dynamic memory handling, your grade will be zero.
 
Note5: Pointers are not allowed, except to read a file.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图