代做FN3142 Quantitative Finance代写数据结构语言程序

FN3142  ZA

Quantitative Finance

Question 1

(a) What is the“efficient markets hypothesis”? [30 marks]

(b) Suppose we are at time t, and we are interested in the efficiency of the market of a given

stock. Let Ωt(w) denote the weak-form. efficient markets information set at time t, Ωt(ss) denote the semi strong-form. efficient markets information set at time t, and Ωt(s) denote the strong-form.

efficient markets information set at time t. To which information set, if any, do the following variables belong? Explain. [70 marks]

1.  The stock price today.

2. The 3-month US Treasury bill rate today.

3.  The inflation rate last year.

4.  Next year’s expenditures just approved by the company’s board of directors  (and not announced yet).

5.  The value today of a put option on the stock that has a six-month maturity.

6.  The value of the stock at time t + 3.

7.  The number of shares AQR Capital Management (a hedge fund) purchased today of the stock.

Question 2

(a)    Show  that  a  stationary  GARCH(1,1)  model  can  be  re-written  as  a  function  of the unconditional  variance  and  the  deviations  of  the  lagged  conditional  variance  and  lagged squared residual from the unconditional variance. [20 marks]

Hint:  a GARCH (1,1) model can be written in the form.

σt(2)+1 = W + βσt(2) + Qεt(2) ;

where W, Q, and β are constants, and εt is zero-mean white noise with conditional variance σt(2) .

(b) Derive the two-step ahead predicted variance for a GARCH(1,1), denoted by σt(2)+2.t and defined  as  Et [εt(2)+2],  as  a  function  of the  parameters  of the  model  and the  one-step  ahead forecast. [40 marks]

(c) Derive the three-step ahead predicted variance for a GARCH(1,1) and con-jecture the general expression for a h-step ahead forecast. Give an example of a financial application that may require using ah-step ahead forecast. [40 marks]

Question 3

(a) Define the concept of “trade duration” in financial markets and explain brieflywhy this

concept is economically useful. What features do trade durations typically exhibit and how can we model these features?  [25 marks]

(b) Describe the Engle and Russell (1998) autoregressive conditional duration (ACD) model. [25 marks]

(c) Compare the conditions for covariance stationarity, identification and positiv-ity of the duration series for the ACD(1,1) to those for the GARCH(1,1). [25 marks]

(d)  Illustrate the relationship between the log-likelihood of the ACD(1,1) model and the estimation of a GARCH(1,1) model using the normal likelihood function. [25 marks]


Question 4

Consider two stochastic processes:  (i) Xt ,  about which we do not know anything for now, and (ii) vt , which is a zero-mean white noise with

Moreover, we know that v and X are uncorrelated at all leads and lags, that is, E[Xtvt-j ] = 0

for all j integers. Let an observed series Zt bedefined as

Zt  = Xt + vt.

(a) What does covariance stationarity mean? [15 marks]

(b)  Prove that the process Zt is covariance stationary if and only if Xt is covariance stationary. [20 marks]

Now assume that Xt  is an MA(1) process:

Xt  = ut + δut-1 ,

where ut  is zero-mean white noise with 

 

(c) Calculate the autocovariances of the process Xt  and show that it is covariance stationary.

[20 marks]

(d) Calculate the autocovariances of Zt  and show that they are zero beyond one lag.

[20 marks]

(e) Is it possible to represent the process Zt  as an MA(1) process?  In particular, assume that we write

Zt  = εt + θεt-1 ,                                                              (1)

where εt isa zero-mean white noise with variance σε(2) . What would be the required restrictions

on θ and σε(2) so that Ztis an MA(1) process? [25 marks]

Hint:  based  on the  assumption  (1), derive the autocovariances of Z as a function  of θ  and σε(2), and compare them to your results in (d) .

 



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图