代做EA50JG Offshore Structural Design 9 Finite Element Analysis代写Processing

EA50JG Offshore Structural Design – Jacket Platforms

9       Finite Element Analysis 9.1     Introduction

Structural analysis is the process of determining the action effects in a structure or structural component in response to  a  given  set  of actions.  Structural  analysis  is required to  demonstrate that the  design  of a platform. satisfies the relevant design code.

Action effects required for the design of jacket structures typically include the following:

●    Internal section forces, which shall not exceed the strength of the section (checked using member strength checks);

●    Support reactions, from which the required foundation capacity can be determined;

●    Displacements  and  vibrations,  which  shall  be  within  acceptable  limits  for  operation  of  the structure;

Various calculation methods may be used for the determination of action effects in response to a given set of actions.  These  include,  but  are  not  limited  to,  hand  calculations  and  computer  methods,  such  as spreadsheets and finite element analyses (FEAs).

9.2     Types of analysis

Different analyses that may be required in the design of a jacket structure are discussed in the sections below.  The applicability of different analysis types for checking the design conditions described in Lecture 5 are shown in Table 9.1 below.

Table 9.1 Applicability of Different Analysis Types

9.2.1   Static/Quasi-Static Linear Elastic Analysis

Static analysis is appropriate when dynamic effects are minimal and can be assumed to be covered by either: the partial action and resistance factors (LRFD) or the applied safety factor (ASD).

Quasi-static analysis is applicable when dynamic effects can be assumed to be approximately uniform throughout the structural systems and so small that one static analysis or a series of static analyses, with a small correction for dynamic effects can adequately account for the dynamic response. The correction for the dynamic response is often applied as a dynamic amplification factor (DAF) on the applied loading.

Linear analysis of offshore jackets can be carried out using a wide range of different software packages. Many offshore  specific packages exist that include modules to calculate wave kinematics and member hydrodynamic forces and to solve for pile head displacements.

9.2.2   Natural Frequency Analysis

A natural frequency analysis is required to calculate the natural frequency and period (period=1/frequency) of a platform. This gives an indication of whether dynamic behaviour will be significant.

Structures for which dynamic behaviour is significant are generally referred to as dynamically responding structures. Redundant, multi-legged fixed structures (e.g. jackets, towers, etc.), with fundamental natural periods or having one or more components with natural periods greater than 2.5s to 3s usually respond dynamically to wave action during sea tow or in-place situations. For other types of structures, such as mono-towers and caissons, dynamic behaviour can be significant even with natural periods of 1s or less.

To  calculate the natural period  of the platform a reasonably accurate  structural model, including both stiffness and mass is required. Dynamic behaviour is likely to be  significant if any natural  frequency, particularly the fundamental frequency, is similar to the frequency of an excitation (typically the wave frequency).

9.2.3   Dynamic Linear Analysis

When  dynamic response  is  considered  significant  (typically if there  is  interaction between the natural period of the structure and the period of the loading), the structural system should be designed and analysed for dynamic behaviour. For a dynamic linear analysis an accurate structural model including both stiffness and mass is required. The type of analysis is governed by the form. of applied actions:

●    Steady state analysis in response to harmonic actions, as required for spectral analysis;

●    Transient analysis in response to arbitrary time-history actions, as can be required for accidental situations and non-linear actions due to waves or earthquakes.

For both types of analysis, the behaviour of the structure and the foundation are assumed to be linear elastic.

9.2.4   Non-Linear Analysis

The  collapse  of a  space  frame.  structure usually results  from progressive  failure  of its components, in particular its primary members and/or joints. Linear analysis can be used to check the  strength of the structural  components  against the  applied  loading, however to  investigate the redistribution of internal forces following a component failure, and the prediction of collapse behaviour a non-linear analysis is required.

Non-linear analysis can be used to account for three forms of non-linearity:

●    Geometric  non-linearities  occur if a  structure experiences large deformations under the applied loading. The changing geometric configuration can cause the structure to respond nonlinearly.

●    Material  non-linearities  occur when a material is  stressed beyond its yield point and begins to behave plastically.

●    Contact  non-linearities  occur  when  deformation  of  the   structure  results  in  a  change  to  the structures boundary conditions.

Non-linear analysis may be required if a structure is subjected to abnormal environmental actions due to wind, wave and current or an earthquake, or to accidental actions from ship impact, fire or explosion, and when a linear analysis predicts:

●    Displacements of a magnitude that are likely to cause second order (P-Δ) effects,

●    Joint failure,

●    Member buckling, and/or

●    Stresses that exceed the yield strength of the material,

For these cases non-linear analysis may be required to justify that the overall structural integrity of the platform. is not impaired.

9.2.5   Reliability Analysis

Structural reliability analysis can be used to calculate the probability of failure of a jacket  structure that does not meet the required acceptance criteria when analysed using a conventional linear or non-linear analysis. Reliability analysis is often used to reassess existing jacket structures (often designed to earlier now superseded design codes). In general reliability analysis methods should not be required for the design of new structures.

9.3     Analysis model

The analytical models used in offshore engineering are in some respects similar to those adopted for other types of steel structures. Only the salient features of offshore models arepresented here.

The same model is used throughout the analysis process with only minor adjustments being made to suit the specific conditions, e.g. at supports in particular, relating to each analysis. An example of a jacket structural analysis model is shown in Figure 9.1.

9.3.1   Beam models

Members

The structural analysis model of a jacket predominantly consists of beam elements representing the axial, bending,  shear  and  torsional   stiffness   of  the  structural  members.  In   some  cases  special  modelling arrangements (either using shell elements or equivalent sections) are used to represent pile clusters and large diameter members provided for storage or flotation.

In  addition to  its  geometrical  and material properties,  each member  is  characterised by hydrodynamic coefficients, e.g. relating to drag, inertia, and marine growth, to allow wave forces to be automatically generated.

The  structure  shall  be  modelled  in  detail  and  should  include  the  primary  and  secondary  structures, conductors, and appurtenances to ensure that action effects are accurately predicted. If this is not possible, the necessary detail of the model shall be prioritized as follows, in the order given:

1. Primary Structure;

2. Secondary Structure (conductor supports and framing);

3. Components provided for Temporary Conditions (launch framing, mudmats etc.);

4. Conductors;

5. Appurtenances.

When  the   structural   contribution  of  any   component   is  neglected,  the   self-weight,  buoyancy  and hydrodynamic actions on the component shall still be included in the model.

 

Figure 9. 1       Jacket structural analysis model

Joints

Each member is normally rigidly fixed at its ends to other elements in the model. If more accuracy is required, particularly for the assessment of natural vibration modes, local flexibility of the connections may be represented by a joint stiffness matrix.

For typical jackets, depending on the diameter of the  chord, the length between the physical end of the brace stub and the centre line of the chord can be significant, and can affect the calculation of member end forces and stresses, weights, masses, hydrodynamic and hydrostatic actions. In such cases, it is customary to model the length of braces between the outer surface of the chord and its centre line as rigid connections (as shown in Figure 9.2); joint flexibility of brace and chord connections is thus neglected.

 

Figure 9.2       Joint rigid link definitions

9.3.2   Foundation model

The stiffness of a piled foundation generally displays non-linear characteristics. The foundation should be modelled  and  analysed  using  non-linear  soil  p-y,  t-z  and  Q-z  curves  as  described  in  Lecture  7.  It  is important to ensure compatibility between the forces and displacements at the pile heads calculated with both the non-linear pile model and linear jacket model. To achieve this the pile stiffness in the jacket model is usually represented by an equivalent load-dependent secant stiffness matrix; coefficients are determined by an iterative process where the forces and displacements at the common boundaries of structural and foundation models are equated. This matrix may need to be adjusted to the mean reaction corresponding to each loading condition.

9.3.3   Topsides

For  structures where the  stiffness of the topside and jacket do not interact  significantly the jacket and topside can be modelled separately. If separate models for the structure and the topsides structure are used, the stiffness of the topsides structure and its interface with the structure should be modelled in sufficient detail to allow its self-weight and applied actions to be calculated and applied to the jacket support points.

Where the structure and the topsides structure interact significantly, a combined model of structure and topsides structure should be used.

9.3.4   Conductors

Conductors can be modelled as beam elements with appropriate releases at the guide frame support points. At typical guide locations the conductor should be free to move axially and rotationally with only lateral support. For jacket structures, the deadweight of conductors is usually self-supported. Care should betaken that appropriate releases are included to ensure that the conductors do not transfer topside loads to the seabed.

9.3.5   Appurtenances

The contribution of appurtenances (risers, J-tubes, caissons, boat-fenders, etc.) to the overall stiffness of the structure is normally neglected.

They are often therefore analysed separately and their reactions applied as loads at the interfaces with the main structure.

9.3.6   Plate models

Integrated decks and hulls of floating platforms involving large bulkheads are described by plate elements. The characteristics assumed for the plate elements depend on the principal state of stress which they are subjected to. Membrane stresses are taken when the element is subjected merely to axial load and shear. Plate stresses are adopted when bending and lateral pressure are to betaken into account.

9.3.7   Loadings

Functional loads

Functional loads consist of:

●    Deadweight of structure and equipments.

●    Live loads (equipments, fluids, personnel).

Depending on the area of structure under scrutiny, live loads must be positioned to produce the most severe configuration (compression or tension); this may occur for instance when positioning the drilling rig.

For dynamic analysis all applied functional loads must be converted to masses.

Environmental Loads

Environmental loads consist of wave, current and wind loads assumed to act simultaneously in the same direction.

In general eight wave incidences are selected; for each the position of the crest relative to the platform. must be established such that the maximum overturning moment and/or shear are produced at the mudline.

In general, environmental loading from the platform. orthogonal directions (platform. North, East, West and South) will maximise the loading in the jacket bracing. Environmental loading from diagonal  directions will maximise loading in the jacket legs and foundations. When analysing diagonal directions the wave approach angle should be modified to minimize the lever arm between the jacket legs resisting the applied overturning moment as shown in Figure 9.3.

 

Figure 9.3       Diagonal wave approach directions

References

[1]. API-RP 2A-WSD: Recommended practice for planning, designing and constructing fixed offshore platforms. American Petroleum Institute 21st  Edition. Errata and Supplement 2 October 2005.

[2].  International  Standard,  ISO   19902-2007,  Petroleum  and  natural  gas  industries  -  Fixed  steel offshore structures, 2007.

[3]. NORSOK, NORSOK STANDARD N-003 Actions and Action Effects, Edition 2 September 2007.

[4]. DNV: Offshore Standard DNV-OS-C101, Design of Offshore Steel Structures, General (LRFD Method), April 2011.

[5]. ESDEP, WG 15A : Structural Systems: Offshore, 1993


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图