代写IS 5213.7D1 Data Science and Big Data Spring 2025调试数据库编程

Course Title: Data Science and Big Data

Course Section and Number:  IS 5213.7D1

Term and Year:  Spring 2025

Course Description: This course introduces the latest data analytics tools and platforms, explores the rapidly developing field of Data Science. You will learn how best to gain actionable insights from  big data, as well as to develop data solutions and data transformation road maps for businesses of varying sizes and complexity levels. The goal of this course is to maximize the utilization of available data and optimize the efficiency of decision-making. Previous experience with Hadoop, Spark or distributed computing is not required.

Learning Outcomes: Upon completion of this course, the student should be able to:

1.   Configure library packages formatted for their target environment.

2.   Prepare data using modeling techniques to ensure quality results.

3.   Develop predictive models using machine learning and statistical techniques.

4.   Recommend business solutions to stakeholders based on big data insights.

Prerequisite: None

Required Text:

R for Absolute Beginners – Hands – on R Tutorial

Free Online Version:

https://www.researchgate.net/publication/331209857_R_for_Absolute_Beginners_-_Hands- on_R_Tutorial

Author: Duarte and Magno

Published Date: 2018

•    Additional material online or provided by instructor videos and notes

Course Requirements:

Attendance/Participation: All students are expected to log in to their courses regularly throughout  the week to receive instruction, materials, and updates from the instructor. It is your responsibility to check in and submit your assignments, complete your discussion board postings, and finish quizzes and exams by the due dates.

If you do not participate in the course, you will be counted absent. Simply logging in is not enough; you must submit/complete an assignment, post to a discussion board, or other similar assignment tasks to avoid being counted absent. Instructors are required to submit attendance the Monday following each week of class.

This attendance is reported to the Financial Aid Department and may result in the loss of any financial aid refund you are expecting if you have not been participating in your courses. In addition, you will be administratively dropped from the course if you are reported absent a total of three weeks.

Content:

Week 1: Install “R”, Exploratory Data Analysis (EDA)

Week 2: Data Scrubbing

Week 3: Decision Trees

Week 4: Model Validation

Week 5: Random Forests and Gradient Boosting Models

Week 6: Linear and Logistic Regression

Week 7: Principal Component Analysis (PCA) and tSNE analysis

Week 8: Clustering and Segmentation

Grading/Evaluation:

Assignments

:

500 Points

Quizzes

:

350 Points

Discussions

:

150 Points ========

Total

:

1000



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图