代写Psychology 2811B - Statistics for Psychology I (Winter 2025)代做留学生Python程序

Department of Psychology

Winter 2025

Psychology 2811B - 650

Statistics for Psychology I

1 CALENDAR DESCRIPTION

This course introduces students to the basics of data analysis for psychological research. Topics  include probability, sampling, estimation, data visualization, and the conduct and interpretation of basic statistical analyses. Throughout the term, students will gain experience in computer-based data analytic methods.

Antirequisite(s): Biology 2244A/B,Economics 2122A/B,Economics 2222A/B,Geography 2210A/B,Health Sciences 3801A/B,MOS 2242A/B,the former Psychology 2810, the former

Psychology 2820E,Psychology 2830A/B,Psychology 2850A/B,Psychology 2851A/B,Social Work 2207A/B,Sociology 2205A/B,Statistical Sciences 2035,Statistical Sciences 2141A/B,Statistical Sciences 2143A/B,Statistical Sciences 2244A/B,Statistical Sciences 2858A/B.

Antirequisites are courses that overlap sufficiently in content that only one can be taken for credit. If you take a course that is an antirequisite to a course previously taken, you will lose credit for the earlier course, regardless of the grade achieved in the most recent course.

Prerequisite(s): Prerequisite(s): At least 60% in 1.0 credits of Psychology at the 1000 level; a passing grade (i.e., at least 50%) inData Science 1000A/Band a passing grade (i.e., at least 50%) in 0.5 credit of Year 1 Math from among the following courses:Calculus 1000A/B,Calculus 1301A/B,Calculus 1500A/B,Calculus 1501A/B,Mathematics 1225A/B,Mathematics 1228A/B,Mathematics 1229A/B,Mathematics 1600A/B,orApplied Mathematics 1201A/B.

Students enrolled in Year 2 of an Honours Specialization in Neuroscience may enrol with 0.5 credit ofApplied Mathematics 1201A/Band 0.5 credit ofComputer Science 1026A/B. Students who have completedStatistical Sciences 1024A/B(or other introductory statistics course, in addition to 0.5 credit of Year 1 Math) may enrol after completing an introductory programming class from the following list:Computer Science 1025A/B,Computer Science 1026A/B,Computer Science 2120A/B,Data Science 1200A/B,Digital Humanities 2220A/B,orEngineering Science 1036A/B.Data Science 2000A/Bmay be substituted forData Science 1000A/Bfor students entering the program with 1.0 Year 1 Math courses.

Unless you have either the prerequisites for this course or written special permission from your Dean to enrol in it, you may be removed from this course and it will be deleted from your record. This decision may not be appealed. You will receive no adjustment to your fees in the event that you are dropped from a course for failing to have the necessary prerequisites.

2 lecture hours and 2 laboratory hours, 0.5 course

2 COURSE INFORMATION:

Lecture (Online/Asynchronous): New lectures will be posted at 9am each Monday

Lab (Online/Asynchronous):        New labs will be posted at 9am Monday every second week (see course schedule below)

Students must have a reliable internet connection and computer that are compatible with online learning system requirements.

3 COURSE MATERIALS

There is no specific textbook for this course. Instead, readings will be drawn from a number of sources – mainly online textbooks but sometimes blog posts and other resources. All of these  sources are freely available online. The links for each reading appear in the course reading list.

4 COURSE OBJECTIVES

The aim of this course is to develop students’ basic data literacy skills by learning to use a data- driven approach to think critically about data. Students will develop statistical knowledge via sampling data from real and simulated datasets, visualizing their results, testing for relationships in their data, and interpreting the patterns they see. The class will extend basic data science training by teaching students to code their own statistical tests and visualizations in Python.

STUDENT LEARNING OUTCOMES

Learning Outcome

Learning Activity

Assessment

Depth and Breadth of Knowledge.

Demonstrate basic knowledge of

probability as it applies to sampling.

Describe the logic and basic elements of null hypothesis significance testing.

Lectures; readings; lab activities

Lectures; readings; lab activities

Homework; Exams

Homework; Exams

Application of Knowledge.

Produce appropriate statistics to describe sample data.

Plot sampling distributions and

graphs that show the relationships

between different types of variables.

Lab activities

Lab activities

Homework; Exams

Homework; Exams

Interpret both graphical and statistical evidence to make conclusions about data.

Recognize from data and/or study design descriptions which statistical tests should be used.

Lectures; readings; lab activities

Lectures; readings; lab activities

Homework; Statistics in the News Project; Exams

Homework; Exams

Application of Methodologies.

Produce code in Jupyter Notebook to calculate statistical tests and data visualizations.

Demonstrate basic data wrangling

skills including outlier exclusion, data cleaning and transformation.

Lectures; readings; lab activities

Lab activities

Homework; Exams

Homework; Exams

Awareness of Limits of Knowledge.

Explain the strengths and

weaknesses of null hypothesis significance testing.

Lectures; readings

Homework; Statistics in the News Project; Exams

5 EVALUATION

Lab/Homework Assignments                     15%

Statistics in the News Project                     15%

Midterm Exam                                               32%

Final Exam                                                       38%

The evaluation and testing formats for this course were created to assess the learning objectives as listed in section 4 and are necessary for meeting these learning objectives.

Bi-weekly Lab/Homework Assignments (15%):

*** This assessment has flexible deadlines. It is exempt from the academic considerations policy. ***

For each lesson, you will complete a set of lab and homework problems in a Jupyter Notebook. The lab elements will be guided by video tutorial. The homework problems you will do on your own. The homework problems will be based on the lecture material for the lesson and will also relate to the corresponding lab material. The Jupyter Notebook with the lab/homework assignment will be released on OWL on the same day as the video tutorial it corresponds with (Mondays of the release week at 9am). It will be due 12 days later, on Friday at 5:00pm. You must upload the Notebook (‘.ipynb’ extension) to the assignment portal on Gradescope. You are responsible for uploading the correct file, in the correct format to the correct portal on Gradescope. If you upload the file incorrectly, you will receive a mark of 0. There are a total of 6 assignments that you will complete over the course of the term. I will drop your lowest score, which means that you can skip one assignment without penalty.

Each of the remaining 5 assignments will count toward 3% of your grade. The solution to the assignment will be released the Monday after the assignment is due at noon. If your assignment has not been submitted before the solution is posted, you will receive a grade of 0. There will be absolutely no exceptions to this policy.

Statistics in the News Project (15%):

We frequently see statistics reported in the news. But are they noteworthy? Or not worthy of the space they take up? The goal of this assignment is to critically evaluate a statistical claim reported in a media outlet. You should select a statistic that is interesting to you but that sounds a bit too good/weird/unusual/outlandish be true. The statistic should also have a clear source citation (e.g., a research article published in a scientific journal, upon which the news story is based). You should then critically evaluate the claim, as well as the original source article, using evidence from both sources.

Write a 280-character “Tweet” style report that states your conclusions about the news article, relative to your evaluation of the source article. Additional details and rubric are available in the resources section on OWL.

Exams (70%): There will be two Proctor-track proctored exams in the course. These exams will be online, synchronous and scheduled by the registrar. The midterm will cover the course material from weeks 1-5. The final will be cumulative (weeks 1-12).



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图