代写BUSI2105 QUANTITATIVE METHODS 2A AUTUMN SEMESTER 2022-2023帮做Python语言程序

BUSI2105-E1

A LEVEL 2 MODULE, AUTUMN SEMESTER 2022-2023

QUANTITATIVE METHODS 2A

1.  Suppose that one student wanted to study the following research question: whether investing abroad can help improve a firm’s productivity? He randomly selected 12 firms, and recorded their productivities  before and after they started  investing abroad  in the following table (assume that firm productivity follows normal distribution) :

Firm

1

2

3

4

5

6

7

8

9

10

11

12

Before

1.5

1.2

1.7

1.5

2.2

2.3

2.1

1.3

1.8

1.9

2.8

2.5

After

1.8

1.6

1.9

1.8

2.7

2.3

2.6

1.4

2.3

2.2

3.2

2.6

(a)     At α  = 0.05, test whether productivities after firms invest abroad are higher than before. (7 Marks)

(b)     Does the approach adopted by this student perfectly answer his research question : does investing abroad help improve a firm’s productivity?  Provide some arguments that may challenge his approach and result.   (4 Marks)

2. A  researcher  obtains  a  sample  with  number  of  observations n =  100 ,  and  population standard deviation σ  = 1 . He uses this sample to formulate the following hypothesis test: H0: μ ≤ 1, and Ha : μ  > 1 . He chooses the significance level α  = 0.05.

(a)     What is the probability of making a type I error?   (2 Marks)

(b)     What is the power of the test if the true population mean μT   =  1. 1?   (5 Marks)

(c)     How large a sample size n  would be required in (b) so as to obtain a power of the test equal to 90%?   (4 Marks)

3.  Suppose that you want to investigate whether movie preference is associated with age. You randomly surveyed 1000 people and obtained the following contingency table.

 

Movie

Age

Drama

Action

Comedy

Others

<20

30

100

80

30

20~40

40

100

130

160

>40

140

40

70

80

At the 1% significance level, test whether movie preference is independent of age.   (10 Marks)

4.  Suppose that you want to compare innovation behaviour of firms across different ownership in a given industry. You randomly selected some firms in this industry, and recorded the number of patents they have applied within the same period of time. Assume that populations are normally distributed.

 

Firm Type

 

Private-owned

State-owned

Foreign-owned

 

 

Number   of patents

1

5

12

2

2

1

7

1

4

4

3

5

1

8

1

10

1

1

1

2

3

2

7

4

5

4

5

7

4

4

(a)     At the 5% significance level, test whether the number of patents is the same between Private-owned firms and State-owned firms.    (8 Marks)

(b)     At the 5% significance level, test whether the number of patents is the same across all types of firms.    (9 Marks)

5.  (a)  Does the matrix  have an  inverse? If your answer is yes, use Gaussian

elimination to find the inverse of this matrix. If your answer is no, explain why.    (7 Marks)

(b) Suppose f(x, y, z) = x 2  + y 2  + z 2  + xy + yz + x + z.  Find the first order conditions and use Cramer’s rule to solve the stationary point(s). Determine whether each stationary point is a local minimum or maximum, or saddle.    (9 Marks)

6.  Bob’s utility function is given by ln x + lny − k 2 , where x  and y  are consumptions of two goods, and k  is the number of hours spent working.

(a)     Optimize this utility function subject to budget constraint px + qy = wk, where p  and q are prices of x  and y  respectively and w  is the hourly wage rate. Use the Lagrangian approach to find the stationary point(s) of this optimization problem.   (4 Marks)

(b)     Verify whether these stationary point(s) are indeed local maximum.    (9 Marks)


7.  Integration

(a)     Compute the indefinite integration

(5 Marks)

(b)     Determine the area to the left of g(y) = 3– y2   and to the right of x  = −1 . 

(6 Marks)

8.  Difference Equations.

(a)     Solve 2xt  + xt−1  = 6  for x0  = 1.   (4 Marks)

(b)     Solve 6xt  − 5xt−1  + xt−2  = 2  for x0   = 1 and x1  = 2 .     (7 Marks)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图