代做BUSI2105 QUANTITATIVE METHODS 2A AUTUMN SEMESTER 2020-2021代写Processing

BUSI2105-E1

A LEVEL 2 MODULE, AUTUMN SEMESTER 2020-2021

QUANTITATIVE METHODS 2A

1. To stimulate the economy after COVID-19 pandemic, many cities in China introduced the consumer coupon. A researcher wants to study whether such consumer coupon has effectively increased the number of households’ transactions within a given period of time, so he collects a sample of cities that have introduced the consumer coupon and a sample of cities that have not. The summary statistics are listed below (assume that the two populations are normally distributed) :

(a)     At α  = 0.01, test whether the consumer coupon has effectively increased the number of transactions (assume equal population variance). (10 Marks)

(b)     In your opinion, what are the potential problems of the above test of difference in means

using independent samples? Explain why it could be better to use matched samples in this case. (6 Marks)

2.  Suppose that you want to study the performances in QM2A of students from different majors. You randomly select some students and record their marks of final exam in the following table, categorizing these students according to the majors they belong to.

Majors to which students belong

FAM

IBE

Others

Marks

Of

QM2A

80

72

66

73

85

90

88

72

67

79

71

67

70

85

89

84

73

66

78

75

69

70

77

80

76

75

75

(a)     If you want to investigate whether the mean mark of students is the same across the above three majors, what test would you use? Explain the intuition of how such test can achieve this research objective. (4 Marks)

(b)     Based on the above data, test whether the mean mark is the same across different majors at the 5% significance level. (12 Marks)

(c)     At the 10% significance level, test whether the variance of marks is the same between FAM students and IBE students. (8 Marks)

3. Consider the following linear simultaneous equation system in x, y, z.

x − y + z = 1                                (1)

2x + y + z = 4                               (2)

5y + 2z = 7                                    (3)

(a)     Express this system in matrix form. AX  = b, with vector X = [x    y     z]T . Find the inverse of the coefficient matrix A  using its determinant and adjoint matrix. (10 Marks)

(b)     Solve the system using Cramer’s Rule.    (6 Marks)

4. A household has the utility function U  = ln(q1) + ln(q2), where q1   and q2   are the quantities of consumption of two types of goods. The budget constraint is given by p1 q1  + p2 q2  = 200, where p1  and p2  are prices of q1   and q2   respectively. The household is a price taker.

(a)     Using the Lagrange function approach, determine the optimal quantities of consumption q1  and q2  that maximize the household’s utility (taking the prices as given).   (6 Marks)

(b)     Based  on  the  Bordered  Hessian  verify  that  your  solution  indeed  constitutes  a maximum of utility. (6 Marks)

(c)     If the price for goods 1 increases from p1   = 5  to p1(′) =  10, other things equal, how large is the loss of the household’s consumer surplus? (6 Marks)

5. The inventory of a firm Qt   adjusts as follows:

Qt+1  = PQ t  + τIt

where It   is the investment that adds new inventory. P  captures the depreciation of inventory such that each period, 1 − P  share of the  inventory is  lost, and 0 < P < 1 . τ measures the efficiency of transforming investment into inventory, and 0 < τ < 1 .

(a)     If investment  It   is a constant It  = I(̅), express Qt  as a function of t  (assume that the initial inventory is Q0 ) (3 Marks)

(b)     If It   = I(̅) + βQt , where β  captures the  reaction of investment to the current inventory level, express Qt   as a function of t  (assume that Q0   is known). (5 Marks)

(c)     Discuss the dynamic trajectories of Qt   that you obtained in (a) and (b) respectively. (6 Marks)

6. A  researcher  wants to  investigate  whether the  investment  preference  is  independent  of gender. He randomly selects 1000 people and makes the following contingency table:

Most Favorite Investment

Gender

Stock

Time Deposit

P2P

Trust Fund

Real Estate

Male

90

36

50

120

310

Female

50

63

30

80

171

At α = 0.05, can the researcher conclude that the preference is associated with gender    (12 Marks)



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图