代做BUSI4528 QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT AUTUMN SEMESTER 2019-2020代做留学生SQ

BUSI4528-E1

A LEVEL 4 MODULE, AUTUMN SEMESTER 2019-2020

QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT

1.  a) In a regression of the U.S. non-farm mortgage debt outstanding on two variables from

1980 to 1995, the following regression results were obtained using Stata:

Debt:      non-farm mortgage debt outstanding in billion $ in the U.S.

Income:  personal income in billion $ in the U.S.

Cost:      new home mortgage cost in %

(i)   Write down the regression model.   [10 marks]

(ii)  Interpret the meaning and significance of each coefficient including the intercept. [20 marks]

(iii) What is the goodness-of-fit of a regression model and what is the F-test for?

Comment on the goodness-of-fit and the F-test results of the above model.   [25 marks]

(iv) Explain the term collinearity. Discuss its consequences in model estimation and explain how to detect it.   [20 marks]

b) Explain  how  graphical  analysis  of  time  series  may  help  to  identify  nonstationary variables.   [25 marks]

Total [100 marks]

2.  a) A sample of 100 workers found the average overtime hours worked in the previous week was 7.8, with standard deviation 4.1 hours. Test the hypothesis that the average overtime hours for all workers is 6.5 hours or less. Use 5% as significance level.

(i) Describe step-by-step the procedure of testing the above hypothesis and state the conclusion.  [30 marks]

(ii) What is p-value? Use the p-value method to test the above hypothesis. [20 marks]

b) Using standard mathematical notation, explain whether the following nonstationary time series models are characterized by deterministic or stochastic trends :

(i)    linear trend model [10 marks]

(ii)   random walk   [10 marks]

(iii)  random walk with drift   [10 marks]

c)  What is meant by ‘spurious regression’? Explain why empirical analysis should be cautious of it.   [20 marks]

Total [100 marks]

3. a) Answer the following questions about panel data modelling.

(i)   Compare and contrast the pooled OLS and fixed effects model in panel data estimation.         [20  marks]

(ii)   Explain the difference between the fixed effects model and the random effects model and how to decide which model is appropriate?                    [30  marks]

b) Consider the following time series model with serially correlated error term:

yt  = α + βxt  + εt ,  with εt   = P1 εt−1  + vt

where var(vt ) = σv(2) ,  and Cov (vt, vs ) = 0  for  t  ≠ S

Show how one could construct a feasible GLS estimator for the parameters α  and β . Discuss the merits of doing so.  [50 marks]

Total [100 marks]

4. a) Answer the following questions about heteroscedasticity.

(i)  Describe what heteroscedasticity is and the consequences of the presence of heteroscedasticity in linear regression.   [20 marks]

(ii) Explain how might the presence of heteroscedasticity be detected and what are the possible solutions to address this issue.  [30 marks]

b) Outline the setup of Probit and Logit models for binary choice data.  [50 marks]

Total [100 marks]

5. a) What does BLUE estimator mean and what are the assumptions to obtain BLUE estimators in a simple linear regression model: y  =  β1  + β2x   +  e  ?   [25 marks]

b) Outline the Dickey-Fuller (DF) test for the null hypothesis of the presence of a unit root in time series.   [25 marks]

c)  Explain how you could test the null hypothesis of no cointegration between two time series variables.   [50 marks]

Total [100 marks]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图