代做ISE 530 Optimization Methods for Analytics Final examination调试Haskell程序

ISE 530 Optimization Methods for Analytics

Final examination

Question 1

Each hour from 10AM to 7PM, Bank of America receives checks and must process them. Its goal is to process all the checks the same day they are received.  The bank has 13 check-processing machines, each of which can process up to 500 checks per hour.   It takes one worker to operate each machine.  The bank hires both full-time and part-time workers. Full -time workers work 10AM-6PM, 11AM-7PM or Noon-8PM shifts and are paid $200 per day.  Part-time workers work either 2PM-7PM or 3PM-8PM shifts and are paid $95 per day.  The number of checks received each day is given in the table below. In the interest of maintaining continuity, the bank must have at least three full-time workers under contract.  Formulate a linear program that finds a cost-minimizing work schedule that processes all checks by 8PM.

Time

Checks received

10AM 11AM Noon

1PM

2PM

3PM

4PM

5PM

6PM

7PM

5,000

4,000

3,000

4,000

2,500

3,000

4,000

4,500

3,500

3,000

Question 2

Consider the following list of points.

#

x y

1

4.1 -1.7

2

1.4     -0.5

3

-0.3 1.2

4

0.4 -2.5

5

0.3 -1.6

6

0.6 -0.8

7

0.8 -1.9

8

0.5 -0.3

The goal is to find a centroid (x* , y* ) that summarizes the data.  In particular, we want to find the centroid and a radius ϵ such that all points in the table are within a distance of at most ϵ of the centroid.

1. Formulate a problem that finds (x* , y* ) and ϵ so that all points are at distance at most ϵ of (x* , y* ), and the radius ϵ is minimized.

2. Formulate a problem that finds (x* , y* ) and ϵ so that 6 points are at distance at most ϵ of (x* , y* ) (while the remaining two points can be arbitrarily far), and the radius ϵ is minimized.

Question 3

1.  Consider the optimization problem

min 47x1 + 93x2  + 17x3  − 93x4

s.t.  − x1  − 6x2  + x3 + 3x4  ≤ −3

x1  − 2x2  + 7x3 + x4  ≤ 5

3x2  − 10x3  − x4   ≤ −8

− 6x1  − 11x2 − 2x3 + 12x4  ≤ −7

x1 + 6x2  − x3 − 3x4  ≤ 4.

Compute its dual.

2.  Consider the following linear optimization problem

max 2x1 + 3x2  + 2x3  + 3x4

s.t. 2x1 + x2  + 3x3  + 2x4  ≤ 8

3x1 + 2x2 + 2x3 + x4  ≤ 7

x1,x2,x3,x4  ≥ 0,

and its dual

min 8y1 + 7y2

s.t. 2y1 + 3y2  ≥ 2

y1 + 2y2  ≥ 3

3y1 + 2y2  ≥ 2

2y1 + y2  ≥ 3

y1 , y2  ≥ 0.

a) Write the optimality conditions

b)  The solution (y1 , y2 ) = (1, 1) is optimal for the dual.  Using the optimality conditions, find a corresponding primal solution.

Question 4

Consider the optimization problem

min x1(2) + 2x2(2) 2x1x2 2x2 .

x1,x2∈R

1.  Starting from point (x1,x2) = (0.5, 0.5), compute an iteration of steepest descent. Is the resulting point stationary? Is it optimal?

2.  Starting from point (x1,x2) = (0.5, 0.5), compute an iteration of Newton method. Is the resulting point stationary? Is it optimal?

3.  Consider the change of variables x3  = x1  − x2, and note that the problem can be rewritten as


min   x3(2) + x2(2) − 2x2.

x2,x3∈R


Starting from point (x2,x3) = (0.5, 0), compute an iteration of steepest descent. Is the resulting point stationary? Is it optimal?







热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图