代做PSTAT 173 FINAL EXAM RISK THEORY 2022代做回归

PSTAT  173 FINAL EXAM

RISK THEORY

MARCH  14,  2022

Problem 1. Let X ~ Gamma(Q = 2, θ = 2). Compute:

(1) VaR0.975 (X)

(2) eX (9.488)

(3) TVaR0.975 (X) and TVaR0.95 (X)

Problem 2.

A company insures a fleet of vehicles.  Aggregate losses have a compound Poisson distribution.  The expected number of losses is 50, and the amount of each loss is assumed to be exponential with parameter θ = 2000.

We modify this coverage by in the following ways:

(1) A deductible of 100 is imposed

(2) It can be assumed that 10% of claims will not be covered (i.e., a benefit payment will not be made to the policyholder in these cases)

What is the expected amount paid by the insurer?

Problem 3. A towing company provides all towing service to members of an Auto- mobile Club. You are given:

Towing Distance

Towing Cost

Frequency

0-4.99 miles

100

40%

5-14.99 miles

150

40%

15-29.99 miles

200

15%

30+ miles

250

5 %

With the following stipulations:

(1) The automobile owner must cover 10% of the towing cost; the rest is covered by the Club

(2) The number of towings is Geometric(β = 50) (use the Appendix parameteri- zation)

(3) The number and cost of towings are independent

Using a normal approximation, what is the minimum amount will the Club need to set aside to cover all claims with a probability of at least 0.9?

Problem 4. You are given:

(1) Losses follow an exponential distribution with the same mean every year

(2) The Loss Elimination Ratio this year is 55%

(3) The ordinary deductible in the upcoming year is 3/2 the current deductible

Calculate the Loss Elimination Ratio for the upcoming year

Problem 5. The random variable for a loss X has the following characteristics:

x

F (x)

E(X ^ x)

0

0

0

20

0.3

121

50

0.8

355

150

1.0

425

Calculate the mean excess loss for a deductible of 25 using linear interpolation for E[X ^ 25] and F (25) (i.e. for F (25), it lies on the straight line connecting F (20) and F (50)).

Hint:  The  CDF value  at x = 150 should make E[X] easy to  compute.

Problem 6. You are given:

(i) Losses follow a single-parameter Pareto distribution with density function:

f(x) = xα+1/α,    x > 1,    0 < Q < ∞

(ii) A random sample of size five produced three losses with values 3,6 and 14 , and four losses exceeding 25 .

Calculate the maximum likelihood estimate of Q.

Problem 7. X is a discrete random variable with a probability function that is a member of the (a,b, 0) class of distributions.

You are given:

(i)   Pr(X = 0) = 2/5Pr(X = 1) = 0.25

(ii)   Pr(X = 2) = 0.03

Calculate Pr(X = 3).

Problem 8. For a lognormal distribution with parameters µ and σ you are given that the maximum likelihood estimates are µb = 2.21 and σb = 1.1.

The covariance matrix of (µ, σ) is


The mode of the lognormal distribution is g(µ, σ) = eμ-σ2 .

(a) Estimate the variance of the maximum likelihood estimate of the mode using the delta method.

(b) Estimate the 95% confidence interval for the mode.

Problem 9. You are given the following information about a general liability book of business comprised of 2500 insureds:

(i) Xi   =  Σj=1 Yij   is a random variable representing the annual loss of the ith insured.

(ii) N1 , N2 , . . . , N2500  are independent and identically distributed random variables following a Poisson distribution with parameter λ = 0.4.

(iii) Yi1, Yi2 , . . . are independent and identically distributed random variables follow- ing a Pareto distribution with α = 3.0 and θ = 1000.

(iv) The full credibility standard is to be within 5% of the expected aggregate losses 90% of the time.

Using limited fluctuation credibility theory (i.e. Chapter 16 material), determine the partial credibility factor Z of the annual loss experience for this book of business.

Problem 10. You are given the following:

• A portfolio of independent risks is divided into three classes.

• Each class contains the same number of risks.

• For all of the risks in Class 1, claim sizes follow a uniform. distribution on the interval from 0 to 400.

• For all of the risks in Class 2, claim sizes follow a uniform. distribution on the interval from 0 to 600.

• For all of the risks in Class 3, claim sizes follow a uniform. distribution on the interval from 0 to 800.

A risk is selected at random from the porfolio.  The size of the first claim observed for this risk is 340.

Determine the Bu…hlmann credibility estimate of the second claim observed for this same risk.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图