代做ENGM029 Power System Analysis Lab Sheet _ Lab 1代做Python编程

ENGM029

Power System Analysis

Lab Sheet Lab 1

Before your Start

•   Ensure you read the instruction document ‘DIgSILENT PowerFactory Modelling Instruction’ and DIgSILENT tutorial documents ‘DIgSILENT Tutorial_Introduction’, ‘DIgSILENT Tutorial_Project’, ‘DIgSILENT Tutorial_LoadFlow’ in the ELE page;

•   DIgSILENT PowerFactory provides Student Licence (PF4S); you are encouraged to make direct contact with DIgSILENT to acquire one licence so you can install in your own computer and can access to and practice the simulation study remotely.

Requirements on Report

•   A report needs to be produced to answer each question in the lab sheet.

•   Assessment: The lab report has a total of 100 marks. The lab report counts for 10% of your final mark.

•   The report should be written in a concise manner to both summarising and discussing the results.

•   The report  should be  submitted as PDF file online through ELE2 system by noon,  1st December 2023.

•  Avoid any form. of plagiarism.

•   Format to be used for the results:

Voltage in p.u.:

3 decimal places

(e.g., 0.965 p.u.)

Voltage in kV:

1 decimal place

(e.g., 132.5 kV)

Power in MW/MVA:

1 decimal place

(e.g., 200.7 MW)

1. Objective

The first Power System Analysis lab aims to enhance your knowledge and skills in power system modelling and power flow calculation and analysis. At the end of the lab session, you should be able to build simple power network model, including generator, transformer, transmission line and load, and carry out power flow simulation and analyse by explaining indicative parameters such as active power, reactive power, bus voltage magnitude and phase angle.

2. Introduction

In this Lab Session, you will learn how to simulate a small power transmission network and  how to perform. power flow calculation in a powerful modern power system simulation software, DIgSILENT PowerFactory. By this simulation exercise, you will learn the underload and  overload effects over a long transmission distance on the system operational performance, mitigation method to stablise the bus voltage, and the efficient Newton-Raphson approach and its application in simulation calculation.

3.  Problem 1 _ Power Flow Problem [50 marks]

Preparation

Open the project file ‘Power System Analysis_Lab  1_P1.pfd’. Ensure the library contains generator type G1, tower type L6, conductor types 1Z×275 kV_ASCR Zebra 400 mm2  and 4Z×275 kV_ASCR Zebra 400 mm2  (300×300).

Problem formation:

A load centre is supplied by hydro-generator (11 kV terminal voltage) through a 11/275 kV step-up transformer, a 200 km long double-circuit transmission line operating at 275 kV, and a 275/33 kV step-down transformer. The configuration of the transmission system is given in the Figure Q1. The load level varies from 40 MW to 340 MW.

Figure Q1

The parameters of the components are given in the following tables:

Transmission Line

Table 1 Double-circuit Transmission Line Parameter

Line length

200 km

Tower Type

L6

Transposition

Perfect (or none)

Conductor Type

4Zx275kV_ASCR Zebra 400mm2 (300x300)

Earth Conductor Type

1Zx275 kV_ASCR Zebra 400mm2

Note: tower, conductor and earth conductor types are included in the library in the project file. Transformer

Table 2. Transformer Parameters

Voltage Ratio

Connection

Power Rating

Short-circuit  impedance %

Load loss kW

No

load

current %

No Load loss kW

Step-up

transformer

T1

1-2

11/275

Yd11

180

MVA

15

450

0.5

60

Step-down transformer

T2

3-4

275/33

YNd11

200

MVA

16

500

0.8

80

Bus

Table 3 Bus Voltage

Bus Number

Voltage Rating kV

Bus 1

11

Bus 2

275

Bus 3

275

Bus 4

33

Generator

Table 4. Generator Parameters

Bus type

G1

Rated Apparent Power

400 MVA

Rated Voltage

11 kV

Rated Power Factor

1.

Note: generator type is included in the library in the project file

Question 1.1: Network conditions with loads at unity power factor [15 marks]

•    Run power flow calculation for loads of 40, 80, 120, 160, 240 and 280 MW

•    Record the active and reactive powers as well as voltage magnitudes and phases of

the generator bus and load bus. Present your recordings in the form. of table/figure in your report;     [10 marks]

•    Discuss your findings;                                                                                       [5 marks]

•    Note:

o To change the setting of active power for the load, go into the power flow’ tab in the load model;

o To run a power flow calculation, click on the ‘Load Flow Calculation’ button

Question 1.2: Network conditions with loads at 0.9 inductive power factor [15 marks]

•    Change the load power factor to 0.9 inductive by introducing appropriate MVAr values

•    Run power flow calculation for loads of 40, 80, 120 and 160 MW. And record the

new active and reactive powers as well as voltage magnitudes and phases of the

generator bus and load bus. Present your recordings in the form. of table/figure in your report;          [10 marks]

•    Discuss your findings and specify the loads at which the voltage drops below 0.9 p.u.; [5  marks]

•    Note:

o To change the setting of reactive power for the load, go into the power flow’ tab in the load model;

Question 1.3: Network conditions with loads at 0.9 inductive power factor with reactive power compensation [20 marks]

•    One approach to keep the load voltage as close to 1.0 p.u. as possible is to connect a source of reactive power near the load bus. In this case, a shunt capacitor or a shunt inductor is added to the load bus. It will produce or absorb reactive power to support and maintain the voltage.

•    Connect a shunt capacitor/inductor model to the load bus and change its rated voltage and adjust the rated reactive power setting. Repeat the calculations in Question 1.2.

•    Find the most suitable values of the reactive power generation/absorption of the shunt capacitor/inductor to maintain the load bus voltage as close as possible to 1.0 p.u. for each load level. And record the reactive power values, new active and reactive powers as well as voltage magnitudes and phases of the generator bus and load bus. Present your recordings in the form. of table/figure in your report;  [15  marks]

•    Discuss your findings;                                                                                       [5 marks]

•    Note:

o To set the reactive power rating, goto the shunt RLC ’ model, choose capacitor or inductor type, and adjust the rated reactive power value

o Keep the number of step in the ‘shunt capacitor’ as 1.

4.  Problem 2 _ N-R Iterative Power Flow Calculation [50 marks]

Preparation

Open the project file ‘Power System Analysis_Lab  1_P2.pfd’. Ensure the library contains generator type G1.

Problem formation:

The three-bus system is given in Figure Q2. System voltage level is 400 kV. Voltages and line impedances are in per unit. The chosen system power base is 100 MVA.

Figure Q2

For transmission line, create a ‘line type’ for all three lines. For the ‘line type’:

•    Rated voltage: 400 kV

•    Rated current: 2 kA

•    Type: overheadline

•    1,2- Sequence reactance X’: 10 Ohm/km

•   Note: you need to go back to the line model to change the length of line to match the given impedance value in p.u.

For generator, select the provided generator type ‘G1’ in the library. However, change the generator ratings in the type to:

•    Rated apparent power: 200 MVA

•    Rated voltage: 400 kV

•    Rated power factor: 1.0

Question 2.1: Load Flow Result by Simulation [10 marks]

•    Run the power flow calculation

•    Record the solutions of active and reactive power flows on each branch as well as voltage magnitudes and phases of the buses. Analyse the results and present your  recordings in the form. of table in your report;   [10 marks]

Question 2.2: Verification of Simulation result by Hand Calculation using Newton-Raphson Approach [40 marks]

•    Write the bus admittance bus for this system                                 [5 marks]

•    Formulate the Newton-Raphson problem and formulate the Jacobian matrix with unknown quantities                           [5 marks]

•    With initial guess of θ2  = θ3  = 0°, |v3| =  1, find the values of Jacobian matrix elements and write the Jacobian matrix J0                      [5 marks]

•    Find the unknown quantities in the 1st  iteration, and compare with the exact results from the simulation                    [10 marks]

•    Continue to the 2nd  iteration, finding the updated Jacobian matrix J1  and calculate the unknown quantities in the 2nd  iteration, and compare with the exact results from the simulation and provide your remarks.                      [15 marks]


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图