代写ECE5470 Prelim 3 Fall 2023代做Python编程

ECE5470 Prelim 3  Fall 2023

1.  Classifier Evaluation 20 pts

A.  (a) A two-class task has the following outcomes for a test set. Carefully sketch the Receiver Operating Characteristic (ROC) on the right.

Only in exams, or theory (or in printing too few digits) will two outcomes have the same probability (0.65), special conditions require special considerations.

(b) Calculate the AUC:     0.4 x 0.2 + 0.2 x 0.7 + 0.2 x 0.8 +0.2 X 1 = 0.57

(0.56 – 0.58)                                                                                                          

(c) Based on the above information, would you consider this model to be

random, weak, good, strong, excellent, or outstanding?          Weak               

B. Consider a classifier with three class outputs A, B, and C.

What method would you use to visualize/evaluate classifier performance _Confusion  Matrix      

C. If the classes were A, B and ‘insufficient image quality’ would this change your analysis approach? If so, how?

The analysis may now be considered as two two-class problems. The first “is the quality good enough?” is independent of the second; (class A or class B?). (If the image is of low quality, then the second classifier is not used). Thus, rather than a confusion matrix this may be better considered as two two-class (e.g. ROC or PRC) analysis.

2.  A Convolution.    20 pts.

a.  Convolve the following matrix with the following kernel, centered at the upper-left position of the kernel.

b.  Perform. a transposed convolution on the following matrix with the following kernel with a stride of 2.

 

B Machine Learning: True or False

a.      T         Stratified sampling helps alleviate class imbalance issue.

b.      A         In interval validation, the final model is trained on the set that gives the best results.

c.       F       ROC curves are used for multiclass-classifications tasks and Precision-Recall curves are used for binary-classification tasks.

d.      T        The purpose of the softmax activation function in the output layer of a neural network is to convert raw output scores into probabilities for classification.

e.      F          Random hyperparameter search is less efficient than grid searc f.         A         Binary cross-entropy loss can be used for a regression task

A = possibly ambiguous question


3. CNN classification model 20 pts.

A. Given the following examples for a convolution block and a linear layer, modify the code accordingly to so that has an additional convolution block with 5x5 convolution that maintains the input size, and three total linear layers that have shapes 1028, 514, and 64. The input is a color  image with shape 28x28x3 and the number of output classes are 2.

class CustomNet(nn.Module):

def    init   (self, num_classes=2):

super(CustomNet, self).   init   ()

self.layer1 = nn.Sequential(

nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1),

nn.BatchNorm2d(16),

nn.ReLU(),

nn.MaxPool2d(kernel_size=2, stride=2))

self.layer2 = nn.Sequential(

nn.Conv2d(16, 16, kernel_size=5, stride=1, padding=2),

nn.BatchNorm2d(16),

nn.ReLU(),

self.fc2 = nn.Linear(14x14x16, 1028)

self.fc3 = nn.Linear(1028, 514)

self.fc4 = nn.Linear(514, 64)

self.fc1 = nn.Linear(64, num_classes)

def forward(self, x):

ut = self.layer1(x)

ut = self.layer2(out)

ut = out.reshape(out.size(0), -1)

ut = self.fc2(out)

ut = self.fc3(out)

ut = self.fc4(out)

ut = self.fc1(out) return out

B.  Calculate the total number of weights in this network. (give the number for each layer in turn)

L1=(3x3x3+1)16  L2=(5x5x16 +1)16   fc2=(14x14x16 +1)1028  fc3=1029x514  fc4=515x64  fc1=65x2

C. What is an example loss function and optimizer you would use for this model?

Loss: Binary cross-entropy, Optimizer: Adam

4. Miscellaneous 20 pts

A. List 2 practical situations when accuracy is not a good evaluation metric.

i.         class imbalance                                                                                         

ii.         different misclassification costs                                                                 

B. Floating Point

Given that FP32 is a traditional 32-bit floating point number with an 8-bit exponent and a signed 24-bit mantissa. What are the following formats:

TF32       8-bit exponent and 10-bit mantissa                                                                       

BF16       8-bit exponent and 7-bit mantissa                                                                         

Where are they primarily used?            GPU                                                                                

C. Binary Classification

(a) Give an equation for accuracy in terms of T, P, TP, FP, TN, etc.

(TP+TN)/(TP+FP+TN+FN) 

(b) Give an equation for specificity in terms of T, P, TP, FP, TN, etc.

_TN/TN+FP                                                                        

D. Name three different methods for reducing overfitting in a CNN system.

1.        Early stopping                                                                                  

2.        Regularization                                                                                    

3.        Dropout                                                                                  

E. What is Balanced Cross Entropy (BCE) Loss and when is it used? (and can you define b?)

BCE is used for imbalanced dataset. ß is the weighting factor and is used to weigh loss of one class more heavily than the other.

5. Image Segmentation and object identification (20 pts.)

A. Indicate which one of the following statements that best matches the listed models. (a)  Object classifications are made by grouping outputs into rectangular regions.

(b)  A U-net is used to provide a segmented object region

(c)  Outputs from several spatially arragned different classifiers are combined to idetify an object

(d)  Scans an object classifier over an image

(e)  First model to use a region proposal network

(i) Masked RCNN       b     

(iv) Region-based Fully Convolutional Network (R-FCN)    c       

(ii) Region-Based CNN (R-CNN)    e     

(iv) Faster Region-based CNN (Faster-RCNN)    e       

(iii)You Only Look Once (YOLO)       a          

 

B. A  partial U-net design for 100 x 100 color images, is given below. Complete the design and list the parameters for the functional units that you add (i.e., function unit name and number of channels, also mark the bunmber of channels  of intermediate data structures as shown) Assume all regular convolution layers are 3x3  with padding 1

 

Examples: A. conv. + BNorm + Relu (40)              .        B     Copy

C.                                                          

D.                                                            . E                                                         

F.                                                          .

G.                                                            .  H                                                            

I.                                                            

J                                                                 

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图