代写BUSI4528 QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT AUTUMN SEMESTER 2020-2021代做留学生Ma

BUSI4528-E1

A LEVEL 4 MODULE, AUTUMN SEMESTER 2020-2021

QUANTITATIVE RESEARCH METHODS FOR FINANCE AND INVESTMENT

1.  a) Answer the following points regarding the Linear Probability Model:

(i)      Using standard mathematical notation, outline the Linear Probability Model for binary dependent variables.   [20 marks]

(ii)     Explain how the LPM can be used to predict binary choices.   [5 marks]

(iii)    Explain how to interpret the regression coefficients in the LPM.   [10 marks]

(iv)    Explain what are the main shortcomings of the LPM?    [15 marks]

b) Consider a model explaining the monthly sales of a popular brand of coffee as a function of its price and the average price of two competitors. Also included is an indicator variable disp=1 if there is a store display but no newspaper ad during the month for the target brand, and 0 otherwise. The indicator variable dispad=1 if there is a store display during the month for the target brand and newspaper ads, 0 otherwise. The estimated results were obtained using Stata:

Sales: logarithm of 1000’s boxes sold

Price: average price of the target brand in $ for a given month

Price1 and Price2: average prices of two competitors.

(i)   Write down the regression model and interpret the meaning and significance of each coefficient, including the   intercept. Are the signs and the relative magnitudes for the advertising variables consistent with economic logic?     [25 marks]

(ii)  Label the parameters in the equation β1, β2  … β6 . With β5   and β6   corresponding to the coefficients of disp and dispad, respectively. If the null hypothesis is H0 : β6  ≤ β5 , state the alternative hypothesis. Why is the test of this null hypothesis against the alternative hypothesis interesting? Carry out the test at the 1% significance, given the calculated t-value is 6.34. What do you conclude?   [15 marks]

(iii) What is an indicator variable and how to avoid the indicator variable trap? In the above regression, assume there is another indicator variable : ads=1, if there is newspaper ads for target brand, and ads=0 otherwise. Explain how to obtain an interaction variable of the indicator variables disp and ads.   [10 marks]

Total [100 marks]

2. a) Compare and contrast the Durbin-Watson (DW) d-statistic test with the Lagrange Multiplier (LM) approach to test for serial correlation in time series models.    [50 marks]

b) We try to explore the relationship between the cost per student and related factors at four-year  colleges  in  the  U.S.,  covering  the  period  1987  to  2011. We  run a  OLS regression using Stata, and the results are as below:

where  lntc  is the  logarithm total cost  per student, ftestu  is the  number of full time equivalent students, ftgrad is the number of full-time graduate students, tt is the number of tenure track faculty per 100 students, GA is the number of graduate assistants per 100 students, and CF is the number of contract faculty per 100 students, which are hired on a year to year basis.

(i)      Write down the regression model.   [10 marks]

(ii)     If we consider university ‘identity’ as a factor that could affect average cost per student, how should we adjust the estimation? Write down the new model and explain the differences with the model in point (i).    [25 marks]

(iii)    What is the F-test used for? Comment the F-test result for the above model.  [15 marks]

Total [100 marks]

3   a)  Outline the setup of the Logit model for binary dependent variables.    [35 marks]

b) Explain why the conventional R-square index is not a valid measure to evaluate the goodness-of-fit of the Logit model. Discuss which other measures of model fit should be used instead.    [15 marks]

c)  We estimate a regression describing the relationship between the cost per student and related factors at four-year colleges in the U.S., covering the period 1987 to 2011, where lntc is the logarithm total cost per student, ftestu is the number of full time equivalent students, ftgrad is the number of full-time graduate students, tt is the number of tenure track faculty per 100 students, GA is the number of graduate assistants per 100 students, and CF is the number of contract faculty per 100 students, which are hired on a year to year basis. One of the test results in our analysis is as follows :

(i)      Explain what this test is used for, and explain what you can learn from the result of the test. [10 marks]

(ii)     Explain the differences between fixed effects model and random effects model. [25 marks]

(iii)    Describe what heteroscedasticity is, and discuss what the consequences of the presence of heteroscedasticity are for linear regression analysis.   [15 marks]

Total [100 marks]

4.  a) Explain how you could test the null hypothesis of no cointegration between two time series variables.   [40 marks]

b) Explain what is meant by ‘spurious regression’ . In what sense should empirical analysis be cautious of it?   [10 marks]

c)  Discuss how the difference-in-difference (DID) estimator (specify the  DID regression model) might be used to test for a potential treatment effect of a policy reform. Outline the key assumptions for the DID estimation. Use graphs where necessary.   [50 marks]

Total [100 marks]



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图