代写AS 3429/9429 Long Term Actuarial Math II Assignment帮做R编程

AS 3429/9429 Long Term Actuarial Math II Assignment

Instruction

1.  Students could work individually or in a group (of maximum two members) to complete the Assignment using Excel (or other mathematical software).

2.  Each student must submit the following two files via Assignments on OWL:

•  One solution report with the formulas and methods explained, required graphs,  and appendix (if needed, e.g., R codes).

•  One Excel spreadsheet showing all the calculations.

*Note: If you work in group, please state clearly the group members at the beginning of your report.

3.  The assignment is due on Friday, Dec 6, by 11:59pm. For late submission, a penalty of 50% mark per day will be applied on an hourly basis.

4. Evaluation: The assignment will be graded out of a total mark of 50, with weights

40%

Excel

60%

Report

Assignment

1.  Construct a special select and ultimate survival model based on the SSSM (Standard Select and Ultimate Survival Model).

Recall that the ultimate part of SSSM assumes Makeham’s Law with: µx  = A + B · Cx ,

where A = 0.00022,  B = 2.7 × 106,  C = 1.124. For this new model, you are given:

•  The select period is three years.

•  Functions for this model are denoted by an asterisk, * . For all values of x,

q*[x]  = 0.97q[x]; q*[x]+1  = 0.98q[x]+1;  q*[x]+2  = 0.99q[x]+2;  qx(*) = qx.

Construct a new table for this special select and ultimate survival model with the values

of p*[x] , p*[x1]+1, p*[x2]+2, px(*) , l*[x] , l*[x1]+1 , l*[x2]+2 and lx(*) . Also,¨(a)x(*) , Ax(*) , 2 Ax(*) ,¨(a)x(*): 10 , Ax(*): 10 ,

¨(a)x(*): 20i ,Ax(*): 20i , 5Ex(*) , 10 Ex(*), 20Ex(*) , ¨(a)x(*)(: , Ax(*)(: , as well as ¨(a)*[x] , ¨(a)*[x(]4) , A*[x(]4) , A*[x] , 5E] , 10 E] ,

20 E] , at integer ages, with limiting age ω = 130.  Assume l2(*)0  = 100, 000 and interest

rate i = 5%. Use UDD for fractional ages where applicable.

Use the special select and ultimate survival model in Question 1 for Questions 2–4.

2.  An insurer issues a 20-year term life insurance policy to a select life [35]. The sum insured of $200,000 is payable at the end of the year of death, and premiums are paid annually throughout the term of the contract and calculated using equivalence principle.  The basis for calculating premiums and policy values is:

•  Interest: 5% per year effective;

• Initial Expenses: $200 plus 25% of the first premium;

•  Renewal Expenses: $25 plus 5% of each premium after the first year.

(a)  Calculate the gross premium policy values at each time t, for t = 0, 1, . . . , 20, and plot them on a graph. Is there any negative policy value? If so, explain the reason.

(b)  Now consider that the insurer earns an actual interest of 6% each year (mortality and expenses are as assumed). Assume that 80% of the profit is distributed as cash dividends to policyholders who are still alive at the end of the year. Calculate the EPV of the profit to the insurer per policy issued. (This is a participating life insurance.)

(c)  Now assume that the premiums are now paid quarterly for maximum 5 years, and the death benefit is paid at the end of month of death.  Ignoring the expenses, calculate the premium policy values at each year and each premium payment time, and plot them on a graph.

*Note that the policy values have jumps at the premium payment time.

3.  Suppose a 20-year endowment insurance with sum insured $20,000 and survival benefit $10, 000 issued to a select life [35]. Assume the death benefit is paid at the end of year of year, while the level premiums are paid annually throughout the term of the contract and calculated using equivalence principle. The basis for calculating premiums and policy values is:

•  Interest: 5% per year effective;

• Initial Expenses: $200 plus 25% of the first premium;

•  Renewal Expenses: 5% of each premium after the first year.

(a)  Calculate the gross premium policy values, net premium policy values and FPT policy values at each year.   Plot  them  on  a  graph,  and briefly  discuss your conclusion by comparing their values.

(b)  Discuss why the premium basis and policy value basis might be different in practice.

4.  Consider a continuous 10-year deferred 10-year term life annuity of $2,000 per year on a selected life aged [35].  A level premium of P is payable continuously each year during the first 10 years. Assume the interest rate is i = 5% and death are uniformly distributed (UDD) within each year of age.

(a)  Calculate the exact premium rate P.

(b) Write out the Thiele’s differential equation for t ∈ (0; 20), and give any relevant boundary conditions.

(c) Determine the premium rate P by solving Thiels’s differential equation using Euler’s method, with a time step h = 0:05.

(d)  Recalculate Part (c) using a time step h = 0:025, and compare the result with Part (a) and Part (c).

(e)  Plot the graph of tV for t ∈ (0; 20).

*You may need the “Goal Seek” function in Excel.

5.  Consider the following model for an insurance policy combining disability income insurance benefits and critical illness benefits.

 

The transition intensities are as follows:

01 x

= a1 + b1 exp{c1 x};

x(02) =  a2 + b2 exp{c2 x};

12 x

=   x(02) ;          x(32)  =  1:1  x(02) ;

 

10 x

= 0:1  x(01) ;          x(03)  =  0:05

x(01) ;          x(13)  =    x(03) ;

where

a1  = 4 × 104;    b1  =  3:5 × 106;    c1  =  0:14; a2  = 5 × 104;    b2  =  7:6 × 105;    c2  =  0:09:

Using Euler’s method with a step size of h = 0:05, calculate values of 20p30(ij) for i =  0; 1 and j =  0; 1; 2; 3.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图