代写IFB113TC Programming for Business Application代做留学生Python程序

IFB113TC Programming for Business Application

1. Project Background

In the rapidly evolving e-commerce landscape, understanding sales trends is crucial for businesses aiming to optimize their strategies and drive growth. Your client, an e-commerce company specializing in a diverse range of products, faces challenges in efficiently analyzing and visualizing their sales data. Currently, the company relies on manual processes and basic spreadsheets, which limits their ability to quickly generate insights and make data-driven decisions.

To address these challenges, the company has commissioned the development of a user-friendly data analysis application. This application is designed to provide comprehensive insights into their sales data, enabling the company to make informed decisions about product strategies, marketing efforts, and inventory management.

1.1 Key Objectives:

1.   Sales Data Visualization: The company requires dynamic and interactive visualizations to better understand sales trends. The application should generate bar charts to compare sales across different product categories and line charts to illustrate trends over time. These visualizations will help identify peak sales periods, emerging trends, and areas needing attention.

2.   Data Summary and Reporting: The application should provide essential statistical summaries of sales data, including total sales, average sales per category, and highest sales values. This will help the company quickly grasp key metrics and performance indicators. The ability to generate and export these summaries in a structured report format is crucial for presenting findings to stakeholders and making strategic decisions.

3.   User Interaction Features: To ensure ease of use, the application must allow users to upload sales data files in CSV format, select the type of analysis they wish to perform, and view results in an intuitive interface. Features like file upload dialogs, analysis selection menus, and result displays are essential for facilitating smooth and efficient data handling.

1.2 Challenges and Considerations:

•   Data Integrity and Quality: Ensure the application handles various data formats and potential data quality issues effectively. Users may upload data with inconsistencies or errors, so the application should include basic validation and error handling mechanisms.

•   Scalability and Performance: As the company’s sales data grows, the application should be able to handle large datasets efficiently. Performance optimization techniques should be considered to ensure quick data processing and visualization.

•   User  Experience:  The user interface should be designed with simplicity and functionality in mind.  It should accommodate  users  with  varying  levels  of  technical  expertise,  providing  clear  instructions  and  feedback throughout the data analysis process.

•   Integration with Existing Systems: While the application will be standalone, consider potential future integrations with the company’s existing systems or platforms for seamless data transfer and enhanced functionality.

1.3 Deliverables:

The final deliverables will include the fully functional data analysis application with the aforementioned features, a detailed project report documenting the development process and showcasing the application’s capabilities and applications in real-world scenarios.

This project aims to empower the company with a robust solution for data analysis, helping them leverage their sales data to drive strategic decisions and enhance overall business performance.

2. Project Requirements

2.1 Requirements Analysis and Design Documentation (20 points)

Task

Description

Points

 

Requirements Analysis

Write a detailed requirements analysis document that defines the functional

requirements and objectives of the application. Describe how to extract useful

information from the data and how these features will help the company. Include user needs, functional requirements, and performance requirements.

 

10

 

Design

Documentation

Create a comprehensive design document that includes the basic architecture and design of functional modules. Include system architecture diagrams,

functional module diagrams, use case diagrams, class diagram etc.. Explain the design approach and implementation steps for each module.

 

10

2.2 Programming Implementation (60 points)

Task

Description

Points

Sales Data

Visualization

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Reading

Write a Python program using pandas to read the CSV file data which is provided on Learning Mall individual assignment section and display the first few rows of

data. Include screenshots showing the codes.

Description of the Data

The CSV file contains transactional data with the following columns:

     Invoice ID: Unique identifier for each transaction.

•     Branch: The branch of the store where the transaction took place.

     City: The city where the branch is located.

•     Customer type: Type of customer (e.g., Member or Normal).

     Gender: Gender of the customer.

     Product line: Category of products purchased.

     Unit price: Price of a single unit of the product.

     Quantity: Number of units purchased.

•     Tax 5%: Tax applied to the transaction (5% of the subtotal).

•     Total: Total amount of the transaction including tax.

     Date: Date when the transaction occurred.

•     Time: Time when the transaction occurred.

     Payment: Payment method used for the transaction.

     cogs: Cost of goods sold.

•     gross margin percentage: Percentage of gross margin in the transaction.

•     gross income: Gross income from the transaction.

     Rating: Customer rating for the transaction.

 

 

 

 

 

 

 

 

 

 

 

5

Bar Chart   Generation

Write code using matplotlib or seaborn to create bar charts showing total sales  amounts for different product categories. Include a title, X-axis label, and Y-axis label. Include screenshots showing the codes.

 

5

Line Chart  Generation

Write code to generate line charts showing sales trends over time (monthly or quarterly) using matplotlib or seaborn. Include a title, X-axis label, and Y-axis  label. Include screenshots showing the codes.

 

5



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图