代做BUSM203 AI for Business 2024/2025代写留学生Matlab语言

BUSM203

AI for Business

2024/2025

Module Level Learning Outcomes to be assessed (Reference to Module Proposal Form)

No

Module Learning Outcome

Description

1

A1

Understand AI and how it can benefit businesses

2

A2

Understand applications of AI in practice and assess capabilities of core AI tools/technologies

3

A3

Understand the role of data and big-data and how to leverage these for creating customer value

4

A4

Understand ethical implications and limitations of AI in terms of the economy, government and society

5

B1

Identify the potential of AI for creating benefits for organisations and stakeholders

6

B2

Evaluate the appropriateness of AI tools depending on the business problem at hand

7

B3

Critically evaluate the limitations and application of AI, including ethical implications

8

C1

Ability to critically evaluate technological advances

9

C2

Ability to find the right AI tools for the (business) problem that needs addressing

10

C3

Assess practical challenges in implementation of AI technology

11

C4

Appreciate limitations and ethical implications for multiple stakeholders

Assurance of Learning (selected modules only): contribution to Programme Level Learning Outcomes

(see programme rubric map)

No

Programme

Learning Outcome

Description

1

1.1

Evaluates the breadth and depth of the debates in the relevant field

2

1.5

Demonstrates reflection on the choice of research methods and approaches, including any relevant issues or obstacles.

3

2.1

Selects credible sources of data

4

2.10

Recommends solutions that could be applied in practice

5

3.2

Expresses arguments coherently through writing

6

3.4

Displays good structure, formatting, style. and presentation of writing

7

3.5

Cites sources of information and data using consistent and a recognised

referencing style

Assessment instructions for students (as per QMPlus ‘Assessment Information’ tab)

DELIVERABLES

You are required to produce a written report, which is presented in a professional style. (as opposed to a theoretical essay) with graphs/tables and references where relevant (these can include industry sources as well as academic). The report will be submitted to a client, which is a bank. The bank has shared a dataset along with descriptions, which is shared in the module assessment page. The report should address the following:

1.   Part A: Predict the probability of loan sanction

The client expects you to build a basic Artificial Neural Network (ANN) model to predict and understand the probability of loan sanction. Here are the relevant instructions:

•    Initial Analysis - Perform. ANN analysis.

In the report, describe which variables you selected, how you designated these in the model (i.e. Dependent Variable, Factor, Covariate), and your evaluation of the model’s performance (e.g. percentage of incorrect predictions). [5 Marks]

•    Model Tuning - Make one change to the model and rerun the analysis.

In the report, describe the tuning task you performed with a brief rationale, and your evaluation of  the tuned model’s performance. Compare the performances of the tuned model to the initial model (i.e. consider the pros and cons of each model) and state which model is better. [10 Marks]

Further, examine the relative importance of predictors. You can do this in SPSS via the Output menu -> tick the box for “Independent Variable Importance Analysis” (see screenshot below).

•    Compare the loan sanction factors for male vs female

In the report, first discuss the importance of the predictors (independent variables) for loan sanction in general (all data). Then, discuss the loan sanction factors for male vs female in as much detail as possible. For example, you should discuss which factors are more focused for male applicants and  which factors get more focus for female applicants. Is there any change? If yes, why? [10 Marks]

2.   Part B: Develop a segment-based loan sanction strategy.

The client is interested in understanding the different segments of loan applicants they currently have, with   a view to using this knowledge for improved future targeting (and growth). The client expects you to conduct a cluster analysis to identify and understand current applicant segments.

•    Initial Analysis:

In the report, discuss the initial cluster solution resulting from the above analysis. This should include (as a minimum), an evaluation of the cluster solution returned (i.e. how well does the model perform?), and the number, size, and characteristics of the clusters/segments (describe them according to the segmentation criteria specified). [10 marks]

•    Model Tuning - Make one change to the model and rerun the analysis.

In the report, discuss the change you made to the initial model, offering a brief rationale for it. Then, discuss the performance of the tuned model in comparison to the initial model – this will include comparisons of the number, size, and characteristics of the segment solutions, as well as a performance metric (i.e. Silhouette score). Conclude by stating which model is better based on your evaluation. [10 Marks]

•    Recommend the loan marketing strategy based on your analysis. What other products of the bank can be sold to these loan applicant segments. Explain with rationale. [10 Marks]

3.   Part C: Discuss the potential for innovation based on emergent technologies.

As mentioned earlier, the client also considers innovation a priority alongside growth. So you have been instructed to examine the potential for leveraging emergent technologies – specifically, the metaverse (including NFTs, blockchain, cryptocurrency, and game engines) and service robots (including humanoid robots, avatars, chatbots, and voice assistants) – for growing the client’s business through introduction of a new business model or revenue stream. Here are the requirements:

•    Conduct further research on the service robots and metaverse in the context of banking through academic sources, market research databases and reputed media outlets. Please cite your information sources appropriately.

In the report, provide an introduction and a critical evaluation of these two technologies for the client, highlighting the latest developments, and the positive and negative aspects of the technologies in general. [15 Marks]

•    In recent times, generative AI has become an important and path breaking innovation. Yet, the bank’s leadership is not sure how they can use it for their growth. Create a research driven report on how Generative AI can help the bank. [15 Marks]

•    The bank employees are skeptical that AI can take away their jobs. The employee union of the   bank is against application of AI in the bank. Customers are also skeptical about the use of AI in the bank. How should the company convince its employees and customers while applying AI in  bank activities? [10 Marks]

4. Overall presentation of the report – professional layout and report style. appropriate for business/executive readers, writing is clear and to the point, logical/coherent arguments to support points  and recommendations, charts/figures and tables (where applicable) to help readers understand key points etc. [5 marks]






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图