代做MSE 5610/MEAM 5530 HW 4 Equilibrium Molecular Dynamics method代做Java语言

MSE 5610/MEAM 5530 HW 4

(Part I: Due 11/05; Part II: Due 11/16)

Equilibrium Molecular Dynamics method

Part I (Due 11/05/24)

The starting configuration for both parts will be the block and neighbor map you developed in HW 2. As in previous homework the interaction between the atoms is described by the Lennard-Jones potential for argon that is smoothly cut-off at  rcut = 7.5Å by a polynomial. The constructed block is a cluster with free surfaces.

(1)       Carry out a MD calculation for this system using the Verlet algorithm with velocities. Start with zero velocities for all atoms so that the kinetic energy is zero at the beginning. As you approach equilibrium the kinetic energy will become finite. Stop the calculation, set the kinetic energy, i.e. velocities, again to zero and continue the MD calculation again. Repeat this until the kinetic energy is small but not zero, corresponding, say to 1 – 2 degrees K. At this point you should get a relaxed structure like that found by molecular statics in HW 3. Check the value of the total pressure and if it is not zero, scale coordinates appropriately and repeat theMD simulation. Display the structure of the block by depicting the atomic positions. Evaluate and plot the radial distribution function (RDF).

(2)       Set T = 5K. Assign to the particles velocities via scaling such that the kinetic energy corresponds to the chosen temperature (the total velocity of the block should remain zero). Continue the calculation until the thermodynamic equilibrium has been attained. (The temperature will be somewhat different than what you assigned and if too different improve the temperature). It is important to equilibrate the MD simulation first and then run for a large number of steps so that the system reaches thermodynamic equilibrium. Display the structure and the RDF as in (1) above.

(3)       Increase the temperature gradually, using scaling of velocities, in steps of about 5K, up to 85 K at least (100K would be ideal). In each case carry out the calculation until the thermodynamic equilibrium has been reached. For submission of Part I, you may do as  many  temperatures  sampling  up  to  85  K  as  possible  (A minimum of  four temperatures are needed for Part I). For Part II submission, your report should include the results for all the temperatures including those in Part I.

Carry out the following analyses for every temperature after reaching the thermodynamic equilibrium:

(a)       Analyze  the  structure of the block by the direct display of atomic positions and by determining the RDF, similarly as in HW 3.  State whether the material is crystalline, liquid or possibly gas at every temperature and briefly explain your answer.

(b)       Evaluate  the  total  energy  and  total  hydrostatic  pressure  and  plot  their  temperature dependencies.

Part II (Due 11/16/24)

Question 4 description below is the same as in Part I.

(4)       Increase the temperature gradually, using scaling of velocities, in steps of about 5K, up to about 85 K. In each case carry out the calculation until the thermodynamic equilibrium has been reached. Display and include all plots in intervals of 5K. Carry out the following analyses for every temperature after reaching the thermodynamic equilibrium:

(a)       Analyze  the  structure of the block by the direct display of atomic positions and by determining the RDF.  State whether the material is crystalline, liquid or possibly gas and briefly explain your answer.

(b)       Evaluate  the  total  energy  and  total  hydrostatic  pressure  and  plot  their  temperature dependencies.

(5)       Determine the temperature dependence of the relevant specific heat.

(6)       Determine the autocorrelation function of velocities for various temperatures. Display its variation at every temperature as a function of time.

(7)       Bonus question  1: Calculate for the liquid and/or gas state (not solid state) the self- diffusion coefficient D as a function oftemperature.  Plot ln(D) vs 1/T for T up to 100 K and comment on the meaning of the slope. (5 marks)

(8)       Bonus question 2: You may simulate a bigger 2D square lattice of your choice for as many temperatures as you can and provide a summary. (5 marks)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图