代写ECON6027 Question 1: Areal Data代做Python程序

ECON6027

Question 1: Areal Data (40 marks)

Shared with you are two files:

1.   “covid.Rdata” gives various covid related observations aggregated at county level in Michigan taken from New York Times. The variables are:

i.      TOT_CASES: total cases

ii.      CASES_ 100K: cases per 100,000 population

iii.      TOT_DEATHS: total deaths

iv.      DEATHS_ 100K: deaths per 100,000 population

v.      PCT_VACC: vaccination take-up rate.

2.   “mi_county”   shapefile  for  the  boundaries.  Michigan  is  the  only  state  to  consist  of two peninsulas.  The Lower  Peninsula  is  shaped  like  a mitten.  The Upper  Peninsula (often called "the U.P.") is separated from the Lower Peninsula by the Straits of Mackinac, a five- mile (8 km) channel that joins Lake Huron to Lake Michigan.

Answer the following questions:

a)   Load the Michigan county shapefile and give a “nb” connectivity plot based on the queen contiguity criterion. (4 marks)

b)  Notice that the “nb” object does not connect the counties “Mackinac” and “Emmet”. Make this connection. Your final “nb” object to be used in this question should be as given in Figure 1.1. This plot must be given along with the summary of the “nb” object. (4 marks)

c)   Load the “covid.Rdata” file and give it spatial awareness using the Michigan county shapefile.

(Hint: You will need to manipulate the “by” argument when mutating joins.) (4 marks)

d)  Using a Moran’s I statistic, give a comparison of the spatial autocorrelation of the variables “CASES_100K” and DEATHS_100K” in each county. (4 marks)

e)   Construct an appropriate plot to identify any significant local cluster(s) of counties with strong spatial spill-over effects in the “TOT_CASES” . What is the geographic/economic significance of the cluster(s) you observe? (4 marks)

f)   How many spatial outliers are there for the variable “TOT_DEATHS” per county? (4 marks)

g)  What is the most suitable lag order for the variable “DEATHS_100K”. (4 marks)

h)  Suppose you wish to regress the variable “DEATHS_100K” on “PCT_VACC.

i.      Justify the use of spatial regression models in this case. (4 marks)

ii.      Compare suitable (spatial) regression models and identify the most suitable model. Use a 5% level of significance in the tests. (4 marks)

i)   Figure 1.2 gives a screen grab of an interactive map as given in The New York Times (it is still there!). Re-create a similar interactive map. (A legend is not required.) (4 marks)

Figure 1.1

Figure 1.2


Question 2: Geospatial Data (30 marks)

Shared with you are two files:

1.   “sg_air.Rdata” contains various air quality indictors from 11 location in Singapore.

2.   “sg_regions.geojson” contains the region boundaries of Singapore.

Figure 2.1

Figure 2.1 shows the live map taken fromhttps://www.iqair.com/showing the Air Quality Index at 11 monitoring  stations  in  Singapore  on  2nd   of November  2022.  Three  other  Malaysian  monitoring locations closer to Singapore border can also be seen on the map. “sg_air.Rdata” contains the dataset related to these observations. The main indicator is an attribute called US-AQI (click here to learn more about Air Quality Indices) which is an index computed using the usual pollutants such as ozone, nitrogen dioxide, sulphur dioxide, etc. Your task is to recreate the surface of the US-AQI using geospatial analysis methods.

Answer the following questions:

a)   Give spatial awareness to the “sg_air.Rdata” dataset. Prepare your dataset for analysis and give a basic plot of your dataset (5 marks)

b)  Re-create the Voronoi Tessellation given in Figure 2.2. (5 marks)

c)  Reconstruct the surface using the inverse distance weighting method where the “idp=1” and “idp=3” . Your output must  show the head of the interpolated estimates and plots of the estimates. Which idp is more appropriate? (5 marks)

d)  Use the autofitVariogram() function to find the most suitable parametric model fit for the empirical semi-variogram. Use this fitted model to predict the US-AQI using ordinary kriging method. Your final answer should include (5 marks):

i.      Plot of the fitted variogram.

ii.      Summary of the predictions.

iii.      Plot of the reconstructed US-AQI indicator over Singapore.

e)   Compare the variogram fits using the models: spherical, wave, Matern and pentaspherical. (5 marks)

i.      Select the model fit that includes a “nugget effect” .

ii.      Re-do the answers to part (d) using the new parametric fit.

f)   Compare the variances of the estimates in parts (d) and (e) and hence identify the best estimate. Your answer may include comparisons of maps, histograms, descriptive statistics, etc. (5 marks)

Figure 2.2

Question 3: Point Data (30 marks)

Shared with you are two geojson files.

1.   “empty.geojson” gives the locations of empty homes in Plymouth, UK and

2.   “plymouth.geojson” is a file containing the neighbourhood boundary of Plymouth, UK.

You are required to prepare a report conducting a comprehensive point pattern analysis of the pattern of empty homes in Plymouth.

Label your outputs clearly and remember to give your interim conclusion at each stage and your overall conclusion. Your analysis can include various tests and plots to support your conclusions.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图