代写AE3401 Pressure Distribution Around a Circular Cylinder代写Java编程

AE3401

Pressure Distribution Around a Circular Cylinder

Objective

To measure the pressure distribution around a circular cylinder and thereby calculate the pressure drag coefficient.

Apparatus

•    T2 wind tunnel (1.12m × 0.8m working section, speed range 5 – 55 m/s).

•    Circular cylinder model (150 mm diameter), pressure tapped at 15° intervals from 0 to 180°

(tappings 1 – 13) and additionally at 210° and -30° (tappings 14 and 15 respectively), mounted to the turntable of the force balance above the test section.

•    Multi-tube manometer, inclinable, containing fluid of specific gravity 0.82.

•    Digital pressure transducer connected, in parallel with the manometer, to apitot-static tube just upstream of the cylinder model,

Procedure

The tunnel must be operated by a competent person, and will be run up to a speed of about  15 m/s (dynamic pressure of about 135 Pa).

Using the tunnel balance controls, correct the  ‘yaw’ angle of the cylinder to make sure that the 2nd  pressure tapping is aligned with the stagnation point: the manometer tubes connected to tapping  15 (-30°) and tapping 3 (+30°) should show the same reading when the cylinder is correctly aligned. Tapping 2 should now read the same as the total pressure tube from the pitot-static probe, but there may be differences which you might discuss in your report.

Note down the readings for all relevant manometer tubes, including those connected to the pitot-static probe. Note how the manometer tubes are connected and decide how high and low pressures on the model and PS tube will be displayed. Be careful not to knock the manometer which will have been levelled carefully for the lab.

Once your measurements are complete, use the balance control panel to rotate the cylinder through 180。to bring the roughness strips to the upstream side of the cylinder. Note any changes to the dynamic pressure on the digital manometer, but there is no need to adjust the tunnel speed control. Repeat the alignment procedure to position tapping  13 under the  stagnation point,  i.e.  so that the manometer tubes connected to tapping  11  (150°)  and tapping 14 (210°) show the same reading. Record all relevant manometer readings once again.

Record the inclination of the manometer, atmospheric pressure and the tunnel air temperature (required to calculate the density of air stream).

Write-Up: Contents

Write  a technical report  on  this  experiment.  In  your  introduction  you  must  both  explain  the  engineering context of the flow around a cylinder and describe the fluid phenomena you expect to encounter during the experiment. Specific requirements for the Theory, Results and Discussion sections are detailed below.

Write-up: Theory

In your write-up you should explain how the manometer height readings are converted into pressure coefficients over the surface of the cylinder, with a specimen calculation shown. Pressure coefficient cp is given by

but the tunnel dynamic pressure first needs to be corrected for ‘blockage’ . The cylinder’s presence in the tunnel means that the airflow is forced to pass through a restricted area between the cylinder and the tunnel walls , so the flow at the cylinder station is artificially faster than it would otherwise be.

We define an effective speed of air past the cylinder Ve given by Vm(1+B), where Vm is the speed measured using the pitot-static or tunnel side-wall tubes at the upstream end of the working section (the undisturbed ‘free stream’ for this flow field). Effective dynamic pressure is therefore given by

B is the sum of two terms, Bs due to solid blockage and Bw due to the wake. These two terms are given by

where D/w is the ratio of cylinder diameter to working-section width (i.e. the proportion of cross-sectional area taken up by the cylinder) and CD is the drag coefficient of the cylinder, which may be assumed to be  1.0 as a starting approximation.

So we can write

We now need to know the difference between local and free stream static pressures to calculate cp but we have only our experimentally-measured free stream pressure, pm. However we can use Bernoulli because the total pressure is the same for both actual and effective streams:

Referring to the earlier expressions we can say

Again, a specimen calculation should be provided to show how you turned your experimental readings (manometer heights) into cp  and CD  values, the latter defined here as

Use the trapezium rule, not Simpson’s rule, to integrate equation (3) numerically. Finally, you should outline how you obtained values for the Reynolds number.

Write-up: Results

This section should include a table of tunnel speeds, cylinder Reynolds numbers and drag coefficients, and plots of both cp and cpcosθ against angular position, θ, for both experiment and (inviscid) theory.

Write-up: Discussion

Include the following in your critical analysis of your results:

1.    Compare the pressure distributions and drag coefficients for both parts of the experiment with each other and with published results from textbooks, at similar Reynolds Numbers, and discuss.

2.    Comment on why you have been able to produce a pressure distribution appropriate to a turbulent boundary layer when the Reynolds number hardly changed from its laminar value in the first part of the experiment.

References

F M White                                    Fluid Mechanics              p298 & p455.

Streeter and Wylie Duncan,           Fluid Mechanics p222

Thom and Young B S                    Mechanics of Fluids p243

Massey                                        Mechanics of Fluids        p260

The Lecture notes

Report marking scheme:

Abstract - 5 marks

Introduction – 10 marks

Don’t forget to mention the relevance of the topic to practical engineering.

Experimental Arrangement / Procedure – 10 marks

Simply copying the lab sheet instructions will get zero marks!

Theory – 10 marks

Here the theory is better coming just before the results since it should concern the analysis of the experimental data rather than the details of the flow physics or any mathematical models (although the inviscid cp distribution would count as real ‘theory’). Simply copying the lab sheet analysis will get zero marks!

Results – 25 marks: 10 for data reduction; 10 for the graphs; 5 for Re, CD values and any text introducing the results.

Discussion – 20 marks: 10 for explanations of your own results; 5 for consideration of errors (i.e. more than just a list); 5 for comparison with any results published in the literature

Conclusions – 5 marks Referencing – 5 marks

Presentation – 10 marks: this includes following the standard report structure.

The length of the report should be limited to maximum of 4 pages with margnins no smaller than 15mm and minimum font size of 11.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图