代写ECON 2331: Economic and Business Statistics 2 Assignment 5代写数据结构语言

ECON 2331: Economic and Business Statistics 2

Assignment 5, Part A (100 marks: 5%)

To receive full marks, you need to show all your work, including all the printouts.

1.   The daily sales figures shown here have been recorded for Apple iPhone 6 in western Canada during the last month: (13 marks total)

Weeks

Day

1

2

3

4

Monday

38

46

35

59

Tuesday

40

36

52

53

Wednesday

17

32

25

28

Thursday

20

17

28

33

Friday

26

20

32

20

a.   Compute the three-day and five-day moving averages; i.e., 3MA and 5MA. (4 marks)

b.   Plot the series and the moving averages on the same graph. Does there

appear to be a seasonal (weekly) pattern? For this sales, would you prefer to use 3MA or 5MA? Why? (6 marks)

c.    Calculate the five-day centered moving averages (3 marks)

2.   The values of Alabama building contracts (in $ millions) for a 12-month period follow: (19 marks total)

240  350  230  260  280  320  220  310  240  310  240  230

a.   Construct a time series plot. What type of pattern exists in the data? (4 marks)

b.   Compare the three-month moving average approach with the exponential smoothing forecast using α=0.4. Which approach provides more accurate   forecasts based on MSE? (6 marks)

c.   What is the forecast for the next month? (3 marks)

d.   Explain how you would find the optimum level of α for this data. (6 marks)

3.   Air pollution control specialists in southern California monitor the amount of ozone, carbon dioxide, and nitrogen dioxide in the air on an hourly basis. The hourly time series data exhibit seasonality, with the levels of pollutants showing patterns that vary over the hours in the day. On July 15, 16, and 17, the following levels of nitrogen dioxide were observed for the 12 hours from 6:00 A.M. to 6:00 P.M. (14 marks total)

July 15:

25

28

35

50

60

60

40

35

30

25

25

20

July 16:

28

30

35

48

60

65

50

40

35

25

20

20

July 17:

35

42

45

70

72

75

60

45

40

25

25

25

a.   Construct a time series plot. What type of pattern exists in the data? (4 marks)

b.   Use the following dummy variables to develop an estimated regression equation to account for the seasonal effects in the data. (10 marks)

Hour1=1 if the reading was made between 6:00 A.M. and 7:00 A.M.; Zero otherwise.

Hour2=1 if the reading was made between 7:00 A.M. and 8:00 A.M.; Zero otherwise.

Hour11=1 if the reading was made between 4:00 P.M. and 5:00 P.M.; Zero otherwise.

Note: that when the values of the 11 dummy variables are equal to zero, the observation corresponds to the 5:00 P.M. to 6:00 P.M. Hour.

c.   Using the estimated regression equation developed in part (a), compute estimates of the levels of nitrogen dioxide for July 18. (4 marks)

d.  Let t=1 to refer to the observation in hour 1 on July 15; t=2 to refer to the observation in hour 2 of July 15; … and t=36 to refer to the observation in hour 12 of July 17. Using the dummy variables defined in part (b) and in t, develop an estimated regression equation to account for seasonal effects and any linear trend in the time series. Based upon the seasonal effects in the data and linear trend, compute estimates of the levels of nitrogen dioxide for July 18. (14 marks)

4.   The quarterly sales data (number of copies sold) for a college textbook over the past three years follow: (36 marks total)

Year

Quarter

Sales

1

1

1690

2

940

3

2625

4

2500

2

1

1800

2

900

3

2900

4

2360

3

1

1850

2

1100

3

2930

4

2615

a.   Construct a time series plot. What type of pattern exists in the data? (4 marks)

b.   Show the four-quarter and centered moving average values for this time series. (5 marks)

c.   Compute the seasonal and adjusted seasonal indexes for the four quarters. (5 marks)

d.  When does the publisher have the largest seasonal index? Does this result appear reasonable? Explain. (6 marks)

e.   Deseasonalize the time series. (4 marks)

f.    Compute the linear trend equation for the deseasonalized data and forecast sales, using the linear trend equation. (8 marks)

g.   Adjust the linear trend forecasts, using the adjusted seasonal indexes computed in part (c). (4 marks)

Assignment 5, Part B (100 marks; 10%)

To receive full marks, you need to show all your work, including all the printouts.

The aim of Assignment 5, Part B is to explain the statistical techniques,  tools, and methods covered in this course by applying them in real-world examples.

You must apply at least one of the techniques/methods learned in this course to real- world data in at least one area of Business and Economics. The data for such a case could either be primary  or  secondary.  The expected length of this assignment is 1,000 words.  A scan of all your data, outputs, and  findings from your software (e.g., Excel®, or XLSTAT®) must be included in the appendix of the assignment (and is not included in the word count).

Topics

Topics for this assignment are to be proposed by you and approved by your Open Learning Faculty Member. You may start with the Case Problems provided at the end of chapters of the textbook and extend the techniques or update the data of the Case Problems to real-world data. Alternatively, you may apply the techniques covered in this course to your choice of real-world data. In either case, the topic and the methods you select for this assignment must first be approved by your Open Learning Faculty Member.

Data

You may obtain the required data from  the  industry/place you work,  or would like to work.

You can also obtain the data from Thompson Rivers University Library. See the Course Guide for more about the library or visit the library’sDROL website at http://www.tru.ca/library/services/distance.html.

Grading

This assignment will be graded based on the following criteria:

Criteria for Assignment

Available Mark

Mark Given

Relevant and clear title with a title

page, student name, student number   and a short biography. The document is typed, double spaced and looks

5

Abstract: 250 words (not included in the 1,000 word count for the main

10

Introduction

5

Objective(s)

8

Methodology

15

Empirical Results

25

Conclusions

7

Discussions

5

Future Research

5

References (minimum 3 references)

10

Appendices (all software printouts are included)

5

100



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图