代写ENT608 Manufacturing Informatics AY24/25代写留学生Matlab语言程序

ENT608 Manufacturing Informatics AY24/25

Assignment – Mini KDD Cup

Main Objectives

.   Enrich and consolidate the understanding of data mining, including its basic concept, methodology and process, categorization of several prevailing tasks, performance

evaluation and visualization, etc.

.   Through a real-world industrial case study, it offers a critical opportunity to learn and practice problem formulation and problem-solving where data mining is used as a technical tool.

.   Understand and reflect on how data mining, as a methodology and tool, can be deployed to tackle the prevailing problems in Manufacturing Informatics.

Case Study – Industrial Background and Data

The steel industry is one of the major contributors to the European as well as the World   economy. About 1/3 of the steel production in the world is done through the recycling of ferrous scrap with the use of an Electric Arc Furnace, or EAF:

Industrial Efficiency Technology Database, 2016. Section and Plan View of Electric Arc Furnace [Online]. Available at: http://ietd.iipnetwork.org/content/electric-arc-furnace

The process of producing recycled steel is as follows: The combined scraps are fed into the  furnace through the furnace door, and an electric current is delivered to the molten scrap via the electrodes that are suspended inside the furnace. The high currents supplied to these electrodes are transferred via an arc to the metal scrap inside, heating it and generating temperatures that can exceed 3000°C.

The conditions inside the furnace are maintained and optimized via the addition of various   reactive and inert gasses and solid matter. The molten steel is then tapped out of the furnace into a mobile crucible and cast into fresh steel billets.

You will be given a dataset representing the process of producing recycled steel billets from a variety of metal scrap types. The dataset contains approximately 3500 instances, and contains a number of Attributes described in the table on the next page:


Attribute

Unit

Data Type

Description

Inputs

Heat Number

-

Nominal

Each heat number corresponds to a batch

Clean Bales ½

Tons

Numeric

Mass of clean bales of steel, Manufacturing scraps

Steel Turnings

Tons

Numeric

Mass of Steel Turnings, machining scraps

Tin Can

Tons

Numeric

Mass of Tin Cans

Estructural

Tons

Numeric

Mass of Structural Steel Scraps

Fragmentized Scrap

Tons

Numeric

Mass of miscellaneous steel scrap

Merchant 1/2

Tons

Numeric

Mass of Scrap Steel from Merchants

Recovered Scrap

Tons

Numeric

Mass of Scrap recovered after the Melt process

Total Scrap Mix

Tons

Numeric

Total mass of the mixed scrap added to the furnace

Outputs

Billet Tons

Tons

Numeric

Mass of recycled steel produced from batch

EAF

MWh

Numeric

Energy consumed during melting of scrap

Parameters

Power On Time

Minutes

Numeric

Duration of the melting process

Secondary Oxygen

Kg

Numeric

Mass of Secondary Oxygen added

Main Oxygen

Kg

Numeric

Mass of Main Oxygen added

Natural Gas

Kg

Numeric

Mass of Natural Gas added

Argon

Kg

Numeric

Mass of Argon added

Carbon Injected

Kg

Numeric

Mass of Carbon added

Lime and Dolomite

Kg

Numeric

Mass of inert Lime and Dolomite added

Dolomite

Kg

Numeric

Mass of additional inert Dolomite added

This KDD exercise aims to make predictions about energy usage within an EAF steel production operation, this is a key optimization factor in such a process, and being able to reliably predict energy consumption is a valuable skill.

The ferrous scrap used as the primary raw material for steel production comes in a variety of forms, each with its own unique chemical composition. A range of different grades of steel can be produced via the combination of different types. As a consequence, in the different chemical compositions, each scrap type will also consume a different amount of energy in order to melt. Each type will therefore have a distinct effect on final grade and energy consumption. The scrap that is rich in ferrous content and has minimum impurities, gives a better yield,and consumes less energy, but costs more to obtain.

You must make decisions about how to utilize this data to reflect the process in your models; pay attention to which attributes you use, and for what purpose you are using them.

Pay attention to the quality of the data, it has been sourced from the real world and may not be as robust as the examples you have seen so far.


Guidelines

.    This is a group-based project. You are required to form. a group with two team members to carry out this exercise.

.    You are allowed to use Weka or any other data mining resource and packages available to help you in problem formulation, computing, evaluation and so on.

.    Your team’s performance will be entirely assessed based on your group’s outcome and your report.

.    As a team, you will be required to decide what the nature of the given problem is; what type of data mining problem formulation is considered suitable for tackling such a problem; what the basic data mining process could be for your team to follow; what type of algorithms should your team wish to try; in what way, you can further leverage or

maximize your performance, and so on.

.    Your team should aim to cover the areas that have been included in the lectures, and tutorials, consider pre-processing, featureselection, a variety of algorithms, validation, test and performance estimation methods.

.    For performance benchmark, you can use Accuracy and/or Error Rate or any metrics that you consider the best fit for the evaluation.

.    The best-performing team will be declared the Champion of this Mini KDD Cup and will receive a 10% bonus mark, up to 100% full mark.

Report and Submission

In this section,instructions are given for your report structure and content expectations. It also indicates the breakdown of report remarks. Please strictly follow this structure in preparing your report. Missing any of the following sections in the final report will directly lead to a zero mark on the corresponding section.

1.    Background Understanding (10%)

This is where your team writes about your understanding of the case study background, its challenge(s), difficulty as well as a potential opportunity that will directly lead to your problem formulation, idea generation, technical blueprint, etc.

2.    Data Understanding (30%)

In this subsection, your team is expected to describe to what degree you have understood the data given. These could include but are not limited to, for example, the initial analysis of the data set; data characteristics (size, number of features, data type, missing data issue, etc); how your team would wish to preprocess such data; your thoughts on data dimensionality, featureselection and data reduction issue; any other insights your team has uncovered, etc.

Your team is expected to supply sufficient evidence (such as screenshots of the performance matrix, graphics drawn from Weka and so on) to support your statement, findings and/or conclusion if any.

3.    Methodology (10%)

Following the generic data mining methodology and process, sufficiently explain how your team wishes to carry out the project; what concerns your team may have, what thoughts you have put forward; and so on.

4. Model Building (30%)

In this subsection, your team is expected to detail how the intended data mining model, through either a supervised or an unsupervised approach, is being explored, formulated and established. Your team needs to rationalize the choice of algorithms, parameters,  performance evaluation, performance tuning, and so on.

Similarly, your team is expected to supply sufficient evidence to support your statement, findings and/or conclusion if any.

5.    Results, Performance and Evaluation (10%)

Present the performance results or evaluation outcomes in a systematic and meaningful  manner. Explain the rationale of the performance metrics adopted, and again, your team is expected to supply sufficient evidence to support the statement, findings and/or conclusion if any.

6.    Conclusion and Reflection (10%)

Draw appropriate conclusions and reflect on the project as a whole. Identify the strengths and weaknesses and address any problems your team may have encountered. Think about if your team is given another opportunity to conduct the project again, what different approach would you like to pursue?

7. Declaration

If any team member has made a significant contribution to the project and is considered appropriate by other team members to reward such efforts, you are welcome to declare it here. Otherwise, it is assumed that all team members have made equal contributions.

Your final submission is your report only which is up to 10 A4 pages (excluding cover page, references and appendix) in Times New Roman, 11 font size, and single-line space with reasonable side margins.

Your team must upload the digital copy of your report to Learning Central before 12pm noon on 21st Nov 2024, Thursday (Acad Week 8). A submission folder will be made available under ENT608 in Learning Central and it will be automatically closed immediately after the deadline. Remember, write in your own words. You CANNOT engage any AI tools in writing including polishing the language. Penalty (10% deduction) applies for a late submission.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图