代做ECE-GY 9423: Design and Analysis of Communication Circuits and Components (Fall 2024) Homework # 1

ECE-GY 9423: Design and Analysis of Communication Circuits and Components (Fall 2024)

Homework # 1 (Due on Thursday, September 17, 2024 before 11:59 pm EST.)

HW: All your calculations should have parametric expressions (wherever possible) and numerical answers (wherever required).

Problem 1.  Wireless transmission and Multi-path Scattering

a.   Consider a wireless transmitter and a receiver with directional antennas with individual beam  patterns  being E being  separated  by  a  distance  of  R=1  km.

Calculate the path loss in dB between the transmitter and receiver. Assume frequency of operation is 28 GHz. (6pt)

b.   Calculate the  input  noise of the receiver for a bandwidth of 1 GHz to sustain a 1 Gb/s link. (Optional and extra 6 points. Noise will be covered in future lectures but if you are already familiar … )

c.   Assuming  transmitter  and   receiver  directivities   (GT,GR )  of  3  dB  each,  calculate  the minimum Tx power to ensure (P > -81dBm) at the Rx. Also argue why the field at the Rx is given by ERx   = k-1 exp 0−j R1, where k is a constant.

d.   Of course, this free-space  propagation (point-to-point  link) conditions are not satisfied in a cellular settings due to multi-path reflection. Let’s try to analyze what happens in such a scenario. (6pt)

Assume that there are scatterers that are randomly distributed which cause the waves to reflect and they interfere at the Rx, as shown in the figure above. These scatterers could  be contributed  by  buildings  in  a  city, trees,  human  beings  and  other  reflecting objects.  Assume that

1)   There is no line-of-sight path (similar to part a.)

2)   There are 10 such scatterers which reflect the signals, each path has one scatterer and the waves are attenuated by α=1/10 after reflection.

If the path propagated by each wave is Ri , argue why the field at Rx is given by


e.   Assume  that  the  scatters  are  placed  in  such  a  way  that  all  the  waves  constructively interfere  at  the  Rx.  Calculate  the  total  path  loss  in  power  (dB)  in  such  a  case  and compare this to part a, if Ri ~1 km. Calculate the minimum Tx power in this case. (6 pts)

f.    Of  course,  this  will  almost  never  happen.  Assume  that  the  scatterers  are  randomly

distributed, such that the  phase shifts suffered due to each scatterer

uniformly distributed  between  [-π, π ].   Since Ri ~1  km  the  amplitude  portion  of  each

scattering wave does not change dramatically with Ri  varying anywhere between   1km±100 meters, but the phase portion is very sensitive to Ri .  Why is that?

(10 pts)

g.   Therefore,  assuming  the  same ~ constant,  run  a  Monte-Carlo simulation with

1000  iterations  in   MATLAB  on  amplitude  of IERx I with θ being  uniformly  distributed between [-π, π ]. Plot the histogram and simulate the mean and variance of IERx I. The distribution is Rayleigh. Calculate the average path loss from the histogram. How does the mean path loss compare to that in part f.? (10pts)

h.   Now  this  scattering  is  a  random  phenomenon  and  you  don’t  really  know  the  actual locations of them. However, you also want the link to work more than 95% of the time> Therefore, you need to send enough Tx power, such that for 95% of the time, SNRmin  is established.  From the  Monte-carlo simulations  in  part 7, calculate the 95th   percentile path loss (path loss is worse than this only 5% of the time).  (10pts)

i.    Re-calculate the minimum Tx power from part i) and compare this to part f). (8pts)

Problem 2 (Antenna Arrays):

In  this  problem,  we  will  plot  the  current  distribution  across  a  simple  dipole  antenna  with various lengths and study the 2D and 3D radiation pattern to understand how the length of the antenna affects the radiation pattern directivity, and current distribution across the antenna. The  abstract  formula for  directivity  and  current  distribution  are  derived  in  Antenna  Theory textbook, Chapter 4. You are encouraged to review the details and the steps leading to these formulas.

A.   Consider a thin (ideally zero diameter) dipole antenna centered at (x,y,z) = 0. For the dipole antenna of length “ L” oriented along the z-axis, the current flows in the z- direction with an amplitude which closely follows the following function:


Plot the normalized current distribution across the length of the antennas for L/λ= 0.1, 0.5, 1, 2, 5. Comment on the number of nulls in the distribution plot as the antenna size increases. (16pts)

B.   Dipole structure is an “omnidirectional” antenna which means that it radiated power is only a function of elevation angle (θ)  and does not change with azimuth angle (φ) and its directivity is given by:

2  , 0 < θ < π, 0 < φ < 2π

Where η = 120π = intrinsic impedance of free space, Io  = Exciation current amplitude


Plot the 2D and 3D plots of directivity in dB scale for 0 < θ < π, and 0 < θ < π, 0 < φ < 2π, respectively for various lengths. Assume, L/λ = 0.1, 0.5, 1, 2, and 5 and compare the number of nulls and maximas with the current distribution plotted in part A and comment. (22pts)


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图