代做ECON 2331: Economic and Business Statistics 2 Assignment 3代写Java编程

ECON 2331: Economic and Business Statistics 2

Assignment 3 (100 marks; 5%)

To receive full marks, you need to show all your work.

1.   Four groups of drivers were selected to test drive three makes (domestic,

Asian, and European) of manual sports cars. The following table shows the average miles per gallon for each group of drivers driving these cars:

(7 marks total)

 

Drivers

Automobile

1

2

3

4

Domestic

25

27

20

28

Asian

29

38

24

37

European

21

28

16

19

a.   Use ANOVA and test to see if there is any difference in the miles-per- gallon of the three types of sports car. Let α = .05. (2 marks)

b.   Now, due to the differences in their years of experiences, drivers are

treated as four blocks. Test to see if there is any difference in the miles- per-gallon of the three makes of the sports automobiles. Let α = .05. (2 marks)

c.   Was the block significant? What does your result imply? (3 marks)

2.   The experimental lab of a car company is testing the performance of two

different types of cars with three blends of gasoline. Cars were driven 1000

miles and the gas mileage was recorded in the following table: (10 marks total)

 

Blend 1

Blend 2

Blend 3

Asian Cars

22.6

19.6

25.3

20.9

22.3

21.6

23.6

20.5

20.5

North

American

Cars

21.9

17.0

24.6

22.0

17.6

22.7

21.1

19.2

20.5

a.   Clearly state the null and alternative hypotheses. (2 marks)

b.   Calculate the test statistic, using α= 0.05. (3 marks)

c.   State the conclusion(s). (2 marks)

d.  How do you know there exists an interaction term? Interpret the meaning of the interaction term in the context of this experiment. (3 marks)

3.   A large annuity company holds many industry group stocks. Among the

industries are banks, business services and construction. Seven companies   from each industry group are randomly sampled to test the hypothesis that the mean price per share is the same among industries. The data are:

(10 marks total)

 

a.   State the null and alternative hypotheses. (2 marks)

b.   Calculate the MSTR and the MSE. (4 marks)

c.   Calculate the test statistic. Using α= 0.05, clearly state the conclusion.  (4 marks)

4.   The following are the results from a completely randomized design consisting of three treatments: (8 marks total)

Source of Variation

Sum of  Squares

Degrees of Freedom

Mean  Square

F

 

390.58

 

 

 

 

158.4

 

 

 

 

 

23

 

 

a.   Using α = .05, test to see if there is a significant difference among the

means of the three populations. The sample sizes for the three treatments are equal. (4 marks)

b.   If in Part (a) you concluded that at least one mean is different from the others, determine which mean(s) is (are) different. The three sample means are   Use Fisherʹs LSD procedure, and let α = .05. (4 marks)


5.   In the following table is a partial computer output based on a sample of 21

observations, relating an independent variable (X) and a dependent variable:

(10 marks total)

Predictor

Coefficient

Standard Error

Constant

30.139

1.181

X

-0.2520

0.022

 

 

SOURCE

SS

Regression

1,759.481

Error

259.186

a.   Develop the estimated regression line. (2 marks)

b.   At α = 0.05, test for the significance of the slope. (2 marks)

c.   At α = 0.05, perform. an F-test. (2 marks)

d.  Determine the coefficient of determination. (2 marks)

e.   Determine the coefficient of correlation. (2 marks)

6.   Part of an Excel output relating X (independent variable) andY (dependent variable) is shown in the following tables. Fill in all the blanks marked with letters from A–L. (12 marks)

Summary Output

 

 

Regression Statistics

Multiple R

A

R Square

0.5149

Adjusted R Square

B

Standard Error

7.3413

Observations

11

ANOVA

 

 

 

 

df

SS

MS

F

Significance F

Regression

C

D

E

F

0.0129

 

Residual

G

H

I

 

 

Total

J

1000

 

 

 


7.   Information regarding a dependent variable y and an independent variable x is provided in the following table: (10 marks total)

Σ x  = 90

S (y - y-)( x - x(-))  = -156

Σ y  = 340

Σ(x - x(-))2   = 234

n = 4

Σ(y - y-)2   = 1974

SSR = 1704

 

a.   What are the least squares estimates of b0, b1? (3 marks)

b.   What are the sum of squares due to error (SSE), and the total sum of squares (SST)? (4 marks)

c.   What is the coefficient of determination? (3 marks)

8.   An automobile dealer wants to see if there is a relationship between monthly sales and the interest rate. A random sample of four months was taken. Here are the results of the sample: (17 marks total)

Y

X

Monthly Sales

Interest Rate (in %)

22

9.2

20

7.6

10

10.4

45

5.3

The estimated least squares regression equation is:  Ŷ= 75.061 - 6.254X

a.   Obtain a measure of how well the estimated regression line fits the data.  (3 marks)

b.   You want to test to see if there is a significant relationship between the interest rate and monthly sales at the 1% level of significance. State the null and alternative hypotheses, and test the hypotheses. (4 marks)

c.   Construct a 99% confidence interval for the average monthly sales for all months with a 10% interest rate. (5 marks)

d.  Construct a 99% prediction interval for the monthly sales of one month with a 10% interest rate. (5 marks)

9.   Quality of a special type of oil is measured in API gravity degrees: the higher  the degrees API, the higher the quality. The following table is produced by an expert in the field who believes that there is a relationship between quality and price per barrel: (16 marks total)

a.   Estimate the regression equation and determine the predicted values of y(3 marks)

b.   Use the predicted values and the actual values of y to calculate the residuals. (3 marks)

c.   Plot the residuals (vertical axis) against the predicted values (horizontal axis). (2 marks)

d.  Does it appear that heteroscedasticity is a problem? Explain. (2 marks)

e.   Draw a histogram of the residuals. Does it appear that the errors are normally distributed? Explain. (3 marks)

f.    Use the residuals to identify possible outlier(s). (3 marks)

 

 



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图