代做MH900 EPIDEMIOLOGY AND STATISTICS MODULE Section 1: MECHANICAL CHEST COMPRESSION DEVICES代写留学生Matla

MH900 EPIDEMIOLOGY AND STATISTICS MODULE

Section 1: MECHANICAL CHEST COMPRESSION DEVICES

SECTION 1: EPIDEMIOLOGY STUDY DESIGN

SURVIVAL   FROM   IN-HOSPITAL   CARDIAC    ARREST    FOLLOWING   CARDIOPULMONARY RESUSCITATION  WITH  A  MECHANICAL  CHEST  COMPRESSION  DEVICE  VERSUS  MANUAL CHEST COMPRESSIONS: A RANDOMISED CONTROLLED TRIAL

1.0 BACKGROUND

In-hospital  cardiac  arrest  (IHCA)  is  associated  with  poor  survival,  or  survival  but  with  impaired neurologic function (Girotraetal, 2012). In the UK, the National Cardiac Arrest Audit (NCAA) reported 22,628  IHCA  cases for ≥16 year olds for April 2011 to  March  2013  (Nolan  et al,  2014). The  data represents approximately 60% of UK hospitals, and indicates an incidence rate of 1.6 IHCA cases per 1,000  hospital  admissions.   16.9%  of  IHCA  patients  had  an  initial  shockable  rhythm  (ventricular fibrillation  or  pulseless  ventricular  tachycardia)  and  72.3%  of  IHCA  patients  had  an  initial  non- shockable rhythm (asystole or pulseless electrical activity). Survival to hospital discharge rates were reported as 18.4% overall, with a 49.0% survival rate for patients with a shockable rhythm and a 10.5% survival rate for patients with a non-shockable rhythm.

Cardiopulmonary resuscitation (CPR) is one of the key links in the “chain of survival” (Cummins et al, 1991) with observational data suggesting that for every minute that CPR is delayed survival decreases by 2.3% (Larsen et al, 1993). CPR at its most basic consists of chest compressions and is preformed to keep blood flowing to vital organs and to preserve brain function.

Scientific guidelines recommend high quality chest compressions based on a depth of 5-6cm, a rate of 100-120 compressions per minute, complete recoil after each compression, and minimal interruptions (Gwinnet, Davies and Soar, 2015). Several reviews of the literature suggest that high quality chest compressions  are  associated  with  improved  survival  with  good  neurologic  functioning  for  IHCA (Sandroni et al, 2007; Wallace et al, 2013). However, observational research indicates  IHCA chest compressions to be sub-optimal and not congruent with CPR guidelines (e.g. Abella et al, 2005).

Mechanical  chest  compression  devices   have   been  designed  as  an  alternative  to   manual  chest compressions,  allowing  prolonged,  high  quality  chest  compressions.  Results  from  randomised controlled trials have not found evidence for the benefit of using these devices in the out-of-hospital cardiac arrest (OHCA) population (Perkinset al, 2015a; Rubertssonet al, 2014; Wiketal, 2014), with a  recent  meta-analysis  showing  a  non-significant  difference  for  survival  from  OHCA  with  good neurologic outcome (OR 0.76, 95% CI 0.53, 1.11) (Gateset al, 2015).

Furthermore, there is only weak observational data suggesting that mechanical chest compression devices can be safely implemented in the IHCA population and improve neurologically intact survival (Bonnemeier et al, 2011); suggesting clinical equipoise with regards to the clinical benefits of using mechanical chest compression devices for IHCA.

2.0 RESEARCH QUESTION

Based on the literature review the following research question is proposed based on the PICO method (Brown et al, 2006): In adult IHCA patients with a non-shockable rhythm (P), do chest compressions given with  a  mechanical  device  (I),  in  comparison  with  manual  chest  compressions  (C),  improve survival to hospital discharge (O)?

The null hypothesis (Ho) is that there will be no difference in survival between IHCA patient's in the mechanical chest  compression  device  group  in  comparison  with  the  manual  chest  compressions group.

3.0 AIM AND OBJECTIVES

The aim of the study is to investigate the effect of a mechanical chest compression device on outcome in a population of IHCA patients.

The study objectives are:

1: To assess the feasibility of implementing a mechanical chest compressions device as part of the IHCA resuscitation process.

2: To evaluate safety issues relating to prolonged use of a mechanical chest compressions device for IHCA.

3: To determine the effectiveness of a mechanical chest compressions device for improving outcomes in IHCA with a non-shockable rhythm, compared with manual chest compressions.

4.0 STUDY DESIGN

A multi-centre, parallel-group, pragmatic randomised controlled trial study design will be employed. Simple 1:1 randomisation will be utilised using a computer generated random sequence, with patients allocated to the treatment group using opaque sealed envelopes.

Due to the nature of the intervention both patients and hospital staff involved in resuscitating the patient will be unblinded. Health professionals conducting the neurologic function assessment will be blinded to the treatment allocation.

All study personnel will be blinded to the treatment allocation. During the analysis phase the two treatment groups will  be  identified  as  0  and  1.  Following  completion  and  approval  of  the  study manuscript, the code will be broken.

5.0 METHODS

Enrolment  of  patients  will  be  24/7.  At  the  point  of  an  IHCA, the  hospital  staff will  call for  the resuscitation team, whilst starting manual chest compressions which will continue until the patient is randomised. The resuscitation team will bring the mechanical chest compression device and sealed envelopes. The patient’s rhythm will be assessed and if non-shockable the patient will be enrolled. Only patients with anon-shockable rhythm will be eligible as patients with a shockable rhythm will be

defibrillated until return of spontaneous circulation (ROSC) is achieved. The next numbered sealed enveloped will be opened and the patient will be randomised to either:

Treatment arm A: mechanical chest compressions with the LUCASTM  2 device (intervention),which is designed to be a lightweight portable device, which can befitted to the patient in less than 20 seconds, providing  safe  and  standardised  chest  compressions  according  to   national  scientific  guidelines (LUCASTM  Chest Compression System, 2015); or

Treatment arm B: manual chest compressions (control) based on Resuscitation Council (UK) 2015 guidelines for in-hospital CPR (Gwinnet, Davies and Soar, 2015).

Resuscitation  will  then  continue  until  the  patient  achieves  ROSC  or  the  normal  procedures  for terminating a resuscitation attempt are followed.

This study will have a pragmatic design, whereby the benefit of the mechanical chest compression device will be assessed under real clinical practice conditions (Roland and Torgerson, 1998). This will include the amount of training given to the staff, and the conditions relating to how quickly the device takes to arrive. The results of the study will be reported in line with the CONSORT statement for pragmatic trials (Zwarenstein et al, 2008).

5.1 Bias

The study design will control for confounding, as the process of randomisation should ensure that the treatment groups are equal for any known or unknown confounders (Brookes and Ben-Shlomo, 2013).

The sealed envelope method will be used for practical reasons due to the emergency nature of a cardiac  arrest,  and  has  been  used  in  similar  studies  (Rubertsson  et  al,  2014).  Failure  to  conceal allocation can invalidate results (Schulzetal, 1995); however,a process will be put in place whereby the envelopes will be locked in the trolley containing the defibrillator and LUCASTM  2 device until the point of randomisation.

5.2 Population and sampling frame

The target population will be all IHCA patients with a non-shockable rhythm in England & Wales. The study population will be all IHCA patients attending participating hospitals in England & Wales. The sampling frame. will be all eligible IHCA patients aged 16 years and over, attending a participating hospital. The sampling method will be random sampling.

5.2 Setting

The setting will be a sample of  hospitals in  England & Wales chosen to  be  representative of the population.

5.3 Enrolment

Patients will be enrolled into the study if after screening they fulfil the following inclusion/exclusion criteria:

5.3.1 Inclusion criteria

•    In-hospital patient in cardiac arrest

•    Presenting rhythm is non-shockable

•    Aged ≥16 years.

5.3.2 Exclusion criteria

•    Patient admitted to hospital due to OHCA

•    Patient is pregnant

•    A terminal illness is present before the IHCA

•    Presenting rhythm is shockable

•    Resuscitation not attempted due to DNACPR order/deemed futile by senior clinician.

6.0 ETHICAL CONSIDERATIONS

Ethical approval will besought from the Local Research Ethics Committee (LREC)

6.1 Consent

Cardiac arrest is associated with immediate loss of capacity so IHCA patients will be unable to give informed consent. Ethical approval will besought to enroll eligible patients without informed consent under the Mental Capacity Act (2005) for England & Wales. Patients or their legal representative will be approached as soon as practicable after the initial emergency has passed to inform. them of their participation and request consent to continue.

Patients will be free to withdraw their consent from the study at anytime after regaining ROSC, and reasons for withdrawal will be collected and reported. A request will be made asking the patient’s permission to use the data obtained prior to withdrawal and to include data for the primary outcome measure. If permission is granted the patient will be included in the final analysis; if not, all data from that patient will be destroyed.

6.2 Safety

Monthly Data relating to patient safety will be provided to an independent Data and Safety Monitoring Committee (DSMC), and the DSMC can request further analyses. A pre-specified interim analysis will be conducted by an independent blinded Statistician. On the basis of an analysis the DSMC may pause or stop the study based on:

•    A  significant difference in benefit between the treatment groups for the primary outcome measure is found, based on a pre-defined threshold and allowing the study to be stopped early

•    A group difference relating to patient safety is found in the analysis indicating harm as a result of the LUCASTM  2 device

•    Results from other studies showing a statistically significant benefit / harm as a result of the LUCASTM  2 device.

6.3 Good Clinical Practice

The study will be carried out in accordance with principles of the MRC Good Clinical Practice (GCP) Guidelines.

7.0 MEASURES AND OUTCOMES

Protocols and training will be put in place to standardise collecting of measures across sites.

7.1 Baseline data

Baseline data collected will include patient identifiable information, event data / clinical information, patient characteristics,  IHCA  aetiology,  and the  hospital  department /  unit  that the  resuscitation attempt took place in.

7.2 Primary outcome measure

The primary outcome measure will be survival to hospital discharge which is a binary endpoint of yes/no

7.3 Secondary outcome measures

The  main secondary outcome  measures will  be  ROSC which  is a  binary end  point of yes/no, and neurologic function which will be measured using the Cerebral Performance Category (CPC) Scale. CPC scores will  be  categorised  into  good  neurologic function  (CPC  score  1  to  2)  and  poor  neurologic function (CPC score 3 to 5) giving a binary endpoint. The CPC is well validated in the cardiac arrest population and its use is recommended by the Utstein guidelines (Perkinset al, 2015b).

Further secondary outcome measures will be time to ROSC and standardised data will be collected relating to adverse physical effects from chest compressions (e.g. fractures).

8.0 STATISTCIAL MEASURES

8.1 Treatment effect

In practice an initial pilot study could be conducted as a preliminary investigation to determine a likely treatment effect and sample size calculation, as well as to assess feasibility and safety. However, due to a lack of published research in the IHCA population, and for the purposes of this study design a treatment effect estimate of a 4% increase in survival to hospital discharge in the mechanical chest compression treatment groupshall be considered.

8.2 Sample size calculation

A sample size calculation shows that to detect a treatment effect of a 4% increase in survival (10.5% vs.14.5%), with alpha (α) set at 0.05 and beta (β) set at 0.8 gives a sample size requirement of 2,144 patients with 1,072 patients in each treatment group (Sampsize Calculator, 2003). There is nofollow- up for the primary outcome so an adjustment for follow-up is not required.

8.2 Data analysis

Descriptive statistics for the data will be produced and a comparison between groups for baseline demographic  and  clinical  characteristics  will   be  conducted,  analysing  whether  there  were  any statistically significant differences between the treatment groups at baseline.

A main intention to treat analysis will be conducted. For the primary and main secondary outcomes, logistic regression analysis will be used to produce odds ratios and 95% confidence intervals. Crude odds ratios will be produced as well as adjusted odds ratios (adjusted for age, sex, ethnicity, initial rhythm, aetiology, hospital department / unit, time to mechanical chest compressions, and time to ROSC). A two-sided significance level of 0.05 will be used for all statistical analyses.

REFERENCES

Abella, B.S., et al. (2005). Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. Journal of the American Medical Association, 293(3),pp. 305-310.

Bonnemeier,   H.,   et   al.   (2011).   Continuous   mechanical   chest   compression   during   in-hospital cardiopulmonary resuscitation of patients with pulseless electrical activity. Resuscitation, 82, pp. 155- 159.

Brookes, S.T. and Ben-Shlomo, Y. (2013). Epidemiological Concepts. In: Ben-Shlomo, Y., Brookes, S.T. and Hickman, M. eds. Epidemiology, Evidence-Based Medicine and Public Health: Lecture Notes. 6th Ed. Chichester: Wiley-Blackwell, pp. 20-25.

Brown, P., et al. (2006). How to formulate research recommendations. British Medical Journal, 333, pp. 804-806.

Cummins, R.O., et al. (1991). Improving survival from sudden cardiac arrest: the "Chain of Survival" concept. A statement for health professionals from the Advanced Cardiac Life Support Subcommittee and the Emergency Cardiac Care Committee, American Heart Association. Circulation, 83(5), pp. 1832- 1847.

Gates, S., et al. (2015). Mechanical chest compression for out of hospital cardiac arrest: Systematic review and meta-analysis. Resuscitation, 94, pp. 91-97.

Girotra, S., et al. (2012). Trends in Survival after In-Hospital Cardiac Arrest. New England Journal of Medicine, 367(20), pp. 1912-1920.

Gwinnet, C., Davies, R. and Soar, J. (2015). Resuscitation Council (UK) Guidelines 2015: In-Hospital Resuscitation.https://www.resus.org.uk/resuscitation-guidelines/in-hospital-resuscitation/

Larsen, M.P., et al. (1993). Predicting survival from out-of-hospital cardiac arrest: a graphic model. Annals of Emergency Medicine, 22(11),pp. 1652-1658.

LUCASTM          2      Chest      Compression      System.      (2015).       LUCASTM           CPR,    http://www.lucas-

cpr.com/en/lucas_cpr/lucas_cpr

Nolan, J.P., et al. (2014). Incidence and outcome of in-hospital cardiac arrest in the United Kingdom National Cardiac Arrest Audit. Resuscitation, 85, pp. 987-992.

Perkins G.D., et al. (2015a). Mechanical versus manual chest compression for out-of-hospital cardiac arrest (PARAMEDIC): a pragmatic, cluster randomised controlled trial. Lancet, 385, pp. 947-955.

Perkins  G.D.,  et  al.  (2015b).  Cardiac  arrest  and  cardiopulmonary  resuscitation  outcome  reports: update of the Utstein resuscitation registry templates for out-of-hospital cardiac arrest: A statement for healthcare professionals from a taskforce of the international liaison committee on resuscitation. Resuscitation, 96, pp. 328-340.

Roland, M. and Torgerson, D.J. (1998). Understanding controlled trials: what are pragmatic trials? British Medical Journal, 316(285), doi:http://dx.doi.org/10.1136/bmj.316.7127.285.

Rubertsson,  S.,  et  al.  (2014).  Mechanical  chest  compressions  and  simultaneous  defibrillation  vs conventional cardiopulmonary resuscitation in out-of-hospital cardiac arrest: the LINC randomized trial. Journal of the American Medical Association, 311(1), pp. 53-61.

Sandroni, C., et al. (2007). In-hospital cardiac arrest: incidence, prognosis and possible measures to improve survival. Intensive Care Medicine, 33, pp. 237-245.

Schulz, K.F., et al. (1995). Empirical evidence of bias: dimensions of methodological quality associated with estimates of treatment effects in controlled trials. Journal of the American Medical Association, 273(5), pp. 408-412.

Wallace,  S.K.,  Abella,   B.S.  and  Becker,  L.B.  (2013).  Quantifying  the   effect  of  cardiopulmonary resuscitation quality on cardiac arrest outcome. A systematic review and meta-analysis.Circulation: Cardiovascular Quality and Outcomes, 6(2),pp. 148-156.

Wik, L., et al. (2014). Manual vs. integrated automatic load-distributing band CPR with equal survival after out of hospital cardiac arrest. The randomized CIRC trial. Resuscitation, 85, pp. 741-748.

Zwarenstein,  M.,  et  al,  (2008).  Improving  the  reporting  of  pragmatic  trials:  an  extension  of  the CONSORT statement. British Medical Journal, 337(a2390), doi:10.1136/bmj.a2390.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图