代写Phar0011: Molecular Pharmacology 2024-2025代写C/C++编程

Phar0011: Molecular Pharmacology

2024-2025

Level-6 Students: Sodium channel block summative data analysis exercise.

In this exercise the effect is studied of two blockers of sodium channels, tetrodotoxin and procaine, on the compound action potential recorded extracellularly from an isolated frog sciatic nerve. The aim of the exercise is to test the hypothesis that the two blockers act on the same channel site: this is done by measuring their effect when applied individually and then simultaneously (see Theory appendix).

Tetrodotoxin (TTX) is a powerful paralytic toxin which is found in Tetraodontid fish, including puffer fish, the Japanese fugu.  It has almost no therapeutic use, but is a valuable tool in experimental neurophysiology.

Procaine is a synthetic agent which was used clinically as a local anaesthetic.

The APPENDIX outlines the theory needed to predict the proportion of channels blocked by TTX or procaine or a mixture of the two.

Draw a diagram of a voltage-dependent sodium channel and label the diagram with the main functional domains of the channel.  Indicate on your diagram the regions ofTTX and procaine binding.

METHOD

Frog sciatic nerve was used to make the measurements to be analysed in this exercise. Briefly, the

sciatic nerve was dissected from apithed frog and mounted in a recording chamber, with stimulating electrodes at the distal (knee) end of the nerve and recording electrodes at the proximal end. Typical stimulation parameters are voltage pulses of 0.1 ms duration at a frequency of 0.1 s-1.   The stimulus strength was adjusted to twice the voltage required to give the maximal compound action potential amplitude. The central section of the nerve was cleaned of its connective tissue sheath in order to allow the blockers a faster access to axonal membranes.  This de-sheathed portion of the nerve was in the centre compartment of the nerve bath and application of drug solutions was restricted to this compartment by vaseline seals around the nerve that prevent drugs from reaching the stimulating and recording chambers.

EXPERIMENTAL RESULTS

i) Control action potential. The compound action potential recorded with an extracellular electrode has a biphasic waveform.

Question 1. Why is the compound action potential biphasic?

ii) The action potential conduction velocity was measured to be 28 ms-1.

Question 2. What does this tell you about the types of nerve fibres which contribute to the action potential in frog sciatic nerve?

The height of the upward deflection of the action potential was recorded at one minute intervals.  Once the action potential amplitude was reasonably steady, the experiment was started.

Experiment 1. Inhibition by 125 nM TTX.  The solution in the chamber was changed to include 125 nM TTX. The amplitude of the compound action potential was measured every minute, until it had reached a stable value and the results are shown in Table 1.

Table 1

Compound action potential

 

Table 2

Compound action potential

Time (mins)

Amplitude (mV)

 

TTX concentration

(nM)

Amplitude (mV)

Control

6.21

 

Control

6.02

1.00

4.71

 

1

5.28

2.00

2.82

 

2

4.60

3.00

2.61

 

5

4.14

4.00

1.59

 

10

3.47

5.00

1.29

 

20

3.06

6.00

1.16

 

50

2.16

7.00

1.13

 

100

1.41

8.00

1.11

 

200

1.28

9.00

1.12

 

Washout

6.04

10.00

1.12

 

 

 

 

 

 

% Inhibition by 1.5 mM Procaine

 

36

 

 

 

% Inhibition by 50% of T plus 50% of P

 

59

Question 3. Plot a graph of action potential amplitude against time for the block with 125 nM TTX.  What factors do you think determine the time course of the block by TTX?

The nerve was then washed thoroughly, and the action potential allowed to recover to the control value.

Experiment 2.  Dose-response curve to TTX.  The aim was to construct an 8-point cumulative dose-inhibition curve for TTX.  Care was taken to measure responses at equilibrium (i.e. when the action potential amplitude  is no longer changing) and that a full recovery to baseline is reached after washout of TTX.

Question 4. Make a plot of the % decrease in action potential amplitude against log(TTX concentration) for the data shown in Table 2.

Question 5. Estimate the IC50  for block of the action potential by TTX.

Question 6. Make a Hill plot of the data and estimate the Hill coefficient (nH).  What do you conclude from the value of the Hill coefficient?

Question 7. Finally, fit these data to the Hill equation using non-linear least-squares fitting in Excel.  How does the value of the Hill coefficient obtained by curve fitting compare to the value you obtained graphically?

Experiment 3.Inhibition by 1.5 mM procaine.   1.5 mM procaine is applied to the nerve and the decrease in the action potential amplitude recorded (the % inhibition is given in Table 2). For the purpose of data analysis, this procaine concentration (1.5 mM) is called P.

Question 8. Response to a procaine-TTXmixture.  From the dose-response curve to TTX, find a concentration of TTX that would give the same %inhibition as the procaine concentration P and call this chosen concentration T.

A solution was made up containing 50% of T plus 50% of P (this was simply achieved by mixing equal volumes of the solutions containing [P] and [T]) and applying to the nerve. The effect of this mixture on the action potential was greater than that produced by [T] alone (the % inhibition is given in Table 2).

Question 9. From the TTX dose-response curve, estimate the concentration of TTX that would give the same inhibition as the 50%/50% mixture and call this concentration T’ .  Accurate matching is important here to allow precise calculations from the data.

CALCULATIONS

The experiment is designed to give equieffective concentrations of procaine and TTX, called P and Trespectively. Since they have equal effect, they must produce equal sodium channel occupancy; hence cP  = cT (from Eq. 4, see Theory appendix).

If the drugs compete, then the mixture containing 0.5P + 0.5Twill produce a block equal to that produced by P or T, (and T = T ) i.e. p(mixture)= p(T) = p(P)

If the drugs do not compete, then the mixture will produce a greater block than P or Talone, i.e. T’ > T.  Equation (9) (appendix) should apply.  In this case, use T'to calculate KP  and KT  (the equilibrium constants for the binding of each drug to the sodium channel):

Question 10. What values of Kp  and KT did you estimate from your data?

PROBLEMS TO SOLVE

Question 11.  Would competitive agents still produce the same effect if you mixed equiactive solutions of  them in the proportions f and 1-f, i.e. if you mixed fP + (1 -f)T, where f is any fraction (0 <f < 1), or does it work only for f = 0.5, as used in the experiment?

Question 12. Having obtained KT  from the experimental data using equation (10), calculate the occupancy othe Na+ channel by TTX at the concentrationsofTTX tested in the experiment (use the Hill-Langmuir equation for the calculation).  Plot the results on the same graph as your TTX dose-response curve.

Question 13. What proportion of channels is blocked at a TTX concentration equal to KT  ?  What is the % inhibition of the compound action potential at this TTX concentration?

Question 14. What proportion of channels must be blocked to obtain 50% inhibition of the compound action  potential?  Discuss (e.g. what does a dose-response curve tell you about receptor occupancy and KT  ?  Why?).

Question 15. Combination therapy is one approach to minimising drug side effects.  From your data, estimate what will be the minimum concentrations of procaine and TTX that you could combine in order to achieve a    total of 80% bock of the sodium channels.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图